Пређи на главни садржај

Релативистички импулс, енергија и честице без масе

Како то да је импулс једнак нули код честица без масе, а енергија у формули E = √(p²c² + m²c⁴) није једнака нули?
Одлично питање! Релативистичка једначина за импулс p = 𝛾m𝜐, при чему је 𝛾 = 1/(1-𝜐²/c²), односи се на честице са масом. Ако је маса једнака нули и брзина кретања честице у односу на посматрача мања од брзине светлости у вакууму, импулс и енергија су заиста једнаки нули. Међутим, ако се честица без масе креће брзином светлости у вакууму у односу на посматрача, у једначинама за импулс и енергију E = 𝛾mc² добијамо односе 0/0. Ово последње се тумачи да честица може имати масу једнаку нули, али њена брзина у том случају има вредност брзине светлости у вакууму. Дакле, једначина за енергију E = √(p²c² + m²c⁴)  је нешто општија у тумачењу постојања ових, такозваних, ултрарелативистичких честица и из једначине с почетка проистиче израз E=pc.
Фотони и глуони представљају примере ултрарелативистичких честица.

Коментари

Популарни чланци

Референтни систем

Анимација приказује слободан пад лопте на броду који се креће. О тој појави је размишљао изопштени свештеник Ђордано Бруно. Наслутио је да путања лопте неће бити иста у односу на посматраче на броду и копну. Истакнути историчар развоја физике Милорад Млађеновић цитира један Брунов запис: „Замислимо два човека, једног на броду у покрету, а другог изван њега. Нека обојица имају руку у истој тачки ваздуха и нека са тог истог места истовремено сваки испусти по један камен. Камен првог, не скрећући са (вертикалне) линије пашће на одређено место, док ће камен другога бити померен уназад.” 
Ако се појава посматра у односу на обалу мора као референтни систем, путања поприма изглед хоризонталног хица. Опажајући исту појаву на броду, а то је приказано у другом делу анимације, путања је попут слободног пада. Разлика је присутна, јер се камера у другом делу анимације креће заједно са бродом те поседује брзину својствену броду, док је у првом делу анимације била непокретна у односу на брод:

Феромагнетици, парамагнетици и дијамагнетици

Упрошћена слика електрона у атому приказује ову честицу на начин да се обрће дуж орбитале, око језгра брзином сталне бројне вредности, али и око своје осе (спин). С обзиром да је електрон наелектрисан, током кретања ствара два магнетна поља: једно настаје због кретања око језгра, а друго због обртања око своје осе. Та два магнетна поља одређују магнетни (диполни) моменти- орбитални и спински. Ова величина је својствена и честицама у атомском језгру, али је њихов допринос укупном магнетном моменту атома знатно мањи те није битан за тумачење магнетних особина материјала. Стрелицама су приказани укупни магнетни моменти атома - као збир магнетних момената електрона.


Код материјала који припадају групи дијамагнетика, атоми не поседују магнетни момент (или је веома слаб) када материјал није изложен дејству магнетног поља. Међутим, у магнетном пољу, као што запис приказује, атоми дијамагнетика стичу магнетне моменте који су усмерени на начин да слабе магнетно поље. Типични представници су в…

Квантни бројеви

Боров модел атома данас има једино историјску вредност. Савремено схватање физике је да су положаји електрона на орбитама могући са великим степеном извесности, али постоји вероватноћа да се нађу и изван тога - што је мање вероватно. Међутим, највеће вредности вероватноћа не морају да се поклапају са полупречницима орбита.  Могући положаји електрона у атому представљају електронске облаке:


Главни квантни број n је уведен од стране Бора и одређује вредност енергије електрона у атому, али и више од тога: његову брзину и удаљеност у односу на језгро. Овај квантни број одређује и величину атома, а поседује целобројне вредности. Његове вредности хемичари означавају са: K, L, М... Орбитални квантни број l је одговоран за облик електронског облака, а одређује и бројну вредност орбиталног момента импулса који је квантован. Хемичари употребљавају ознаке: s, p, d... Магнетни квантни број mₗ одређује оријентацију електронског облака у простору. Анимација је приказала три просторна распореда p обл…

Ерстедов експеримент

Хеленски мислиоци уочили су да материјали који испољавају магнетна својствапривлаче предмете начињене од гвожђа. Било им је познато да је структура камена из Магнезије попут предмета начињених од гвожђа, а привлачно својство тумачили су постојањем извесног флуида који потиче из магнета. С обзиром да је експериментално истраживање у физици заживело тек при крају епохе ренесансе, тумачење магнетизма је протицало споро. Упечатљив пример за тако нешто представља вишевековно погрешно уверења да бели лук може извршити размагнетисавање игле компаса. Због тога је члановима посаде који су руковали том направом било забрањено да једу ову намирницу! Половином XIII века, војни инжењер Пјер д Марикур вршећи експерименте открива да магнет поседује два пола, при чему се полови појављују иако се магнет преполови, а магнетна игла компаса је усмерена у правцу „небеских полова”. Он појаву приписује утицају неба, а не присуству Земљиног магнетног поља. Покушао је и да направи вечити покретач тако што је…