Пређи на главни садржај

Конструкција ликова код огледала

Обично се предмети приказују усправним стрелицама у току изучавања конструкције ликова, што упрошћава поступак, али одудара од реалности. Симулација садржи два карактеристична зрака који се простиру праволинијски. Овакав приступ пружа могућност да на једноставан начин објаснимо због чега огледала у аутомобилима немају облик попут огледала у купатилу. Међутим, дифракцију и интерференцију не можемо објаснити полазећи од модела зрака светлости.
Ако је предмет испред сферног огледала које је ка њему испупчено - конвексно - клизач полупречника кривине је померен удесно. Први зрак се простире у правцу жиже огледала, одбија се од њега под углом једнаким упадном углу овог зрака, гледајући у односу на нормалу на површину огледала, а затим се простире паралелно оси огледала. Други зрак погађа теме огледала и исто тако се одбија под углом једнаким упадном углу тог зрака. У пресеку продужетака зрака је врх лика предмета, тако да му је почетак на оси. Лик је умањен, усправан и имагинаран.

Огледала у физици

geogebra.org/m/rDfJrjZc

Ако је предмет испред сферног огледала које је према њему издубљено - конкавно - клизач полупречника кривине је померен улево. Први зрак се простире паралелно оси огледала, затим се одбија од огледала под углом једнаким упадном углу овог зрака и пролази кроз жижу огледала. Други зрак погађа теме огледала. Ако је предмет између жиже и центра огледала, лик је увећан, изврнут и реалан. Када је предмет испред жиже издубљеног огледала, лик је увећан, усправан и имагинаран. Какав лик се добија ако је предмет у центру или жижи?
За приказ лика код равног огледала клизач је потребно поставити на средину.

Коментари

Популарни чланци

Феромагнетици, парамагнетици и дијамагнетици

Упрошћена слика електрона у атому приказује ову честицу на начин да се обрће дуж орбитале, око језгра брзином сталне бројне вредности, али и око своје осе (спин). С обзиром да је електрон наелектрисан, током кретања ствара два магнетна поља: једно настаје због кретања око језгра, а друго због обртања око своје осе. Та два магнетна поља одређују магнетни (диполни) моменти- орбитални и спински. Ова величина је својствена и честицама у атомском језгру, али је њихов допринос укупном магнетном моменту атома знатно мањи те није битан за тумачење магнетних особина материјала. Стрелицама су приказани укупни магнетни моменти атома - као збир магнетних момената електрона.


Код материјала који припадају групи дијамагнетика, атоми не поседују магнетни момент (или је веома слаб) када материјал није изложен дејству магнетног поља. Међутим, у магнетном пољу, као што запис приказује, атоми дијамагнетика стичу магнетне моменте који су усмерени на начин да слабе магнетно поље. Типични представници су в…

Референтни систем

Анимација приказује слободан пад лопте на броду који се креће. О тој појави је размишљао изопштени свештеник Ђордано Бруно. Наслутио је да путања лопте неће бити иста у односу на посматраче на броду и копну. Истакнути историчар развоја физике Милорад Млађеновић цитира један Брунов запис: „Замислимо два човека, једног на броду у покрету, а другог изван њега. Нека обојица имају руку у истој тачки ваздуха и нека са тог истог места истовремено сваки испусти по један камен. Камен првог, не скрећући са (вертикалне) линије пашће на одређено место, док ће камен другога бити померен уназад.” 
Ако се појава посматра у односу на обалу мора као референтни систем, путања поприма изглед хоризонталног хица. Опажајући исту појаву на броду, а то је приказано у другом делу анимације, путања је попут слободног пада. Разлика је присутна, јер се камера у другом делу анимације креће заједно са бродом те поседује брзину својствену броду, док је у првом делу анимације била непокретна у односу на брод:

Максвелова расподела брзина молекула

Полазећи од истраживања Рудолфа Клаузијуса, шкотски физичар Џејмс Максвел разрађује кинетичку теорију гасова математичким путем и долази до открића функционалног облика расподеле брзина молекула гасова. Молекули гасова се крећу брзинама различитих бројних вредности. Те вредности су прилично високе. На пример, на температуриод 200 C молекули ваздуха крећу се брзином у просеку око 1500 km/h. То је дупло више у односу на брзине путничких авиона. На платформи Geogebra приказао сам графичку симулацију расподеле брзина молекула: geogebra.org/m/ahgewp8k
Корисник може да одабере вредности моларне масе и температуре гаса, а на кривој је означена највероватнија брзина молекула. Основу видео записа чини балон испуњен топлим ваздухом: youtu.be/mwbk_dZMEQg
Први део односи се на расподелу брзина када ваздух није изложен пламену. На ординатној оси није прецизно наведена величина, јер је анимација намењена гимназијској популацији младих људи који похађају други разред и нису у могућности да детаљно упоз…

Ерстедов експеримент

Хеленски мислиоци уочили су да материјали који испољавају магнетна својствапривлаче предмете начињене од гвожђа. Било им је познато да је структура камена из Магнезије попут предмета начињених од гвожђа, а привлачно својство тумачили су постојањем извесног флуида који потиче из магнета. С обзиром да је експериментално истраживање у физици заживело тек при крају епохе ренесансе, тумачење магнетизма је протицало споро. Упечатљив пример за тако нешто представља вишевековно погрешно уверења да бели лук може извршити размагнетисавање игле компаса. Због тога је члановима посаде који су руковали том направом било забрањено да једу ову намирницу! Половином XIII века, војни инжењер Пјер д Марикур вршећи експерименте открива да магнет поседује два пола, при чему се полови појављују иако се магнет преполови, а магнетна игла компаса је усмерена у правцу „небеских полова”. Он појаву приписује утицају неба, а не присуству Земљиног магнетног поља. Покушао је и да направи вечити покретач тако што је…