Пређи на главни садржај

Ласер

Да ли јачина ласерског зрачења зависи још од нечега осим таласне дужине?
Јачина излазног електромагнетног зрачења зависи од врсте и величине материјала у коме настаје појачање путем стимулисане емисије зрачења. Таласна дужина је у вези са енергетским нивоима између којих се дешавају прелази електрона. С обзиром на начин стварања стања у коме је већина атома у одређеном побуђеном стању, снага зависи и од врсте побуде атома. Снага је енергија ∆E која се емитује у току временског интервала ∆t, тако да се смањивањем временског интервала код ласера који дају светлост у импулсима може увећати снага.

За ласерску светлост важе закони преламања светлости?
Наравно. На фотографији је то могуће уочити:

Одбијање и преламање светлости


Ако имамо два ласера који дају светлост различите боје, на пример црвену и зелену, да ли домет ласерске светлости зависи од таласне дужине? 
На кратким растојањима, до који допиру показивачи, ће вероватно обе светлости имати исти домет. Што се тиче већих растојања, домет било које ласерске светлости је ограничен због расејања на молекулима ваздуха и примесама у атмосфери, као и због апсорпције од стране појединих врста молекула - попут водене паре. То што можемо опазити ласерску светлост док се простире кроз ваздух је због њеног расејања, иначе би била невидљива. Рејлијев закон пружа могућност да сагледамо зависност јачине I и таласне дужине расејане светлости 𝛌:
I~1/𝛌⁴
Зелена светлост је мање таласне дужине па ће се више расејати на молекулима, што значи да ће бити уочљивија, док ће црвена имати већи домет.

Популарни чланци

Слагање осцилација

У делу који се тиче осцилаторног кретања, предвиђено је да се ученик упозна са основним својствима слагања осцилација, што ће касније послужити при изучавању фреквентне и амплитудне модулације електромагнетних таласа. На платформи Геогебре сам дао математички приказ слагања два осцилаторна кретања:
geogebra.org/m/szaQaJB9 Корисник је у могућности да одабере различите вредности амплитуда, кружних фреквенција и почетних фаза осцилаторних кретања, представљених тригонометријским функцијама и то је означено плавом и зеленом бојом. Црвеном бојом је дат приказ сложеног кретања.

Нуклеарна магнетна резонанца

Корисници ове дијагностике највише су заинтересовани да добију информацију о евентуалним штетним последицама снимања. Ако изузмемо људе са уграђеним пејсмејкерима, не постоји нежељено дејство на организам, зато што јонизације молекула унутар ћелија људског организма нису присутне. Видео запис Ова појава тиче се утицаја спољашњег магнетног поља на протоне и неутроне у атомском језгру. С обзиром да је у људском организму водоник најобилнији и да садржи један протон, у наставку текста ће бити речи искључиво о овој честици.Због присуства наелектрисања, протон је попут малог магнета чију вредност магнетног поља одређује физичка величина позната под називом магнетни момент. Када су протони изложени дејству спољашњег магнетног поља, већина магнетних момената је усмерена попут поља. Протон је енергетски стабилнији ако је његов магнетни момент оријентисан као и вектор магнетне индукције. Протони се могу побудити, односно превести у стање са вишом енергијом, бомбардовањем радио таласима - и т…

Електромагнетне осцилације

Најједноставнији приказ електромагнетних осцилација представља веза калема и кондензатора у струјном колу. Такво коло је присутно у многим електронским уређајима које употребљавамо.  Кондензатор је приказан у облику ваљка и у почетку је био напуњен. Позитиван знак је у складу са позицијом позитивне облоге кондензатора, а приказује и смер струје у колу. У калему настаје магнетно поље, али се постепено формира због присуства индуктивног електричног отпора. Након што се кондензатор испразни, струја самоиндукције пуни кондензатор - у складу са Ленцовим законом.