Пређи на главни садржај

Рендгенско зрачење

Откриће рендгенских зрака започиње крајем XIX века. У том периоду су вршени су експерименти са катодним цевима. Цев су сачињавале катода - извор електрона и анода, док је електрично поље било присутно између две електроде. Катода се загревала и емитовала електроне, а електрично поље је убрзавало ове честице ка аноди. 
Вилхелм Конрад Рендген је изводио експерименте и случајно открио да флуоресцентни папир светлуца на столу близу цеви. Приметио је светлуцање чак и када је био пар метара далеко од стола. Затим је између папира и цеви постављао књиге различите дебљине или дрво и установио да се светлуцање и даље опажа. Запазио је да алуминијумске плоче одређене дебљине умањују појаву, што је посебно било уочљиво код олова које је заустављало непознате зраке. А ако се рука постави, уочава се сенка костију. Из разлога што није познавао њихову природу, назвао их је икс зраци.


С обзиром да је апсорпција електромагнетног зрачења присутна у свакој материјалној средини, то се односи и на рендгенске зраке. Кроз меко ткиво, где су присутни атоми са ниским редним бројем, зраци пролазе са минималном апсорпцијом, док кроз материјале попут костију је апсорпција изражена због присуства минерала. На рендгенском снимку се то запажа као сенка костију. Крајем прошлог века Рендгеново откриће је унапређено кроз CT скенер.

Коментари

Популарни чланци

Ерстедов експеримент

Хеленски мислиоци уочили су да материјали који испољавају магнетна својствапривлаче предмете начињене од гвожђа. Било им је познато да је структура камена из Магнезије попут предмета начињених од гвожђа, а привлачно својство тумачили су постојањем извесног флуида који потиче из магнета. С обзиром да је експериментално истраживање у физици заживело тек при крају епохе ренесансе, тумачење магнетизма је протицало споро. Упечатљив пример за тако нешто представља вишевековно погрешно уверења да бели лук може извршити размагнетисавање игле компаса. Због тога је члановима посаде који су руковали том направом било забрањено да једу ову намирницу! Половином XIII века, војни инжењер Пјер д Марикур вршећи експерименте открива да магнет поседује два пола, при чему се полови појављују иако се магнет преполови, а магнетна игла компаса је усмерена у правцу „небеских полова”. Он појаву приписује утицају неба, а не присуству Земљиног магнетног поља. Покушао је и да направи вечити покретач тако што је…

Електрична струја у води и ваздуху

Ако стојим до колена у води, да ли ће струја прво стићи до мене кроз ваздух или воду? Први део одговора односи се на чињеницу да је ваздух одличан изолатор према протицању електричне струје. Проводљивост воде је условљена присуством примеса. Слана вода поседује добру проводљивост, питка вода је знатно слабији проводник док је дестилована вода лош проводник, али ипак поседује нижу специфичну отпорност од ваздуха. Према томе, под нормалним условима, електрична струја не би могла да се простире кроз ваздух па је вода једина средина погодна за проток електричне струје.

Други део одговора односи се на то када услови нису уобичајени. Ту мислим на појаву муње. Да би се испољила, неопходно је да се између доњег дела облака и површине тла формира јако електрично поље тако да непроводни ваздух буде у стању плазме. То значи да су присутни молекули ваздуха у великој мери јонизовани под утицајем електричног поља. Поменуто поље врши убрзавање наелектрисања ка електричним потенцијалима супротног зна…

Референтни систем

Анимација приказује слободан пад лопте на броду који се креће. О тој појави је размишљао изопштени свештеник Ђордано Бруно. Наслутио је да путања лопте неће бити иста у односу на посматраче на броду и копну. Истакнути историчар развоја физике Милорад Млађеновић цитира један Брунов запис: „Замислимо два човека, једног на броду у покрету, а другог изван њега. Нека обојица имају руку у истој тачки ваздуха и нека са тог истог места истовремено сваки испусти по један камен. Камен првог, не скрећући са (вертикалне) линије пашће на одређено место, док ће камен другога бити померен уназад.” 
Ако се појава посматра у односу на обалу мора као референтни систем, путања поприма изглед хоризонталног хица. Опажајући исту појаву на броду, а то је приказано у другом делу анимације, путања је попут слободног пада. Разлика је присутна, јер се камера у другом делу анимације креће заједно са бродом те поседује брзину својствену броду, док је у првом делу анимације била непокретна у односу на брод:

Средња и тренутна брзина

Сумњам да просечни петнаестогодишњак може да разуме концепт тренутне брзине на начин представљен у нашим уџбеницима. Исто тако не верујем да ће ова симулација нешто битно променити у том смислу. Можда буде од користи на крају школовања у гимназији, када се буду спремали за завршни испит и упис на факултет. Пропуштена је прилика да писци програма за гимназију, ко год да су, прилагоде програм физике, посебно механике, узрасту ђака.  Циљ симулације је да се успостави веза између средње и тренутне брзине путем графика. Корисник је у могућности да помера клизач - да одабере интервал независно променљиве - и да путем приказаних вредности зависно и независно променљиве израчуна вредности средње брзине. Вероватно ће уочити некакву правилност када буде упоредио неколико израчунатих вредности.

geogebra.org/m/b9ch5hzz Однос сечице и тангенте је лако уочити померањем клизача, тако да се симулација може употребити при изучавању брзине као првог извода положаја.