Пређи на главни садржај

Уске гуме на бициклу

Због чега бициклисти на тркама возе са уским гумама?
Трење није разлог због чега професионални бициклисти користе танке гуме, већ умањење отпора ваздуха. Можда и другачија вредност масе, ако уопште постоји, и њен распоред дуж точка у односу на стандардне гуме има позитиван утицај на момент инерције точка, али у то нисам сигуран. Колико је битно вискозно трење у спорту указује поредак бициклиста у току вожње, док код пливача капице умањује вискозно трење косе.

Трење котрљања и отпор ваздуха

Признајем да ми након деценија бављења физиком овакво занимљиво питање није пало на памет. У наставку следи занимљива прича која указује да често упрошћавамо поимање трења, сводећи на пуку дефиницију везе ове појаве са силом притиска гуме на површину. 
Трење котрљања би могло да се узме у обзир када се размишља о типовима гума, мада ту следи једно изненађење. Али, прво о трењу котрљања. Ова појава настаје због пријањања гуме на подлогу. Предњи део који ступа у контакт са подлогом се деформише ка унутрашњости гуме, док на задњи део - онај који се одваја од подлоге - сила делује тако да је усмерена ка подлози. Ове деформације гуме нису једнаке, због несавршене еластичности гума, већ је прва јача. Дакле, појављује се момент спрега сила који успорава котрљање точка. А сада следи изненађење: трење котрљања ширих гума је мање у односу на уске - при једнаким притисцима ваздуха у гумама. Та чињеница проистиче из мерења оних фирми које се баве унапређењем својстава гума за бицикле. Уске и широке гуме, при једнаким притисцима, имају једнаке додирне површине са подлогом, али уске гуме пријањају са нешто већим обимом точка, чиме се објашњава и веће трење котрљања код те врсте. Прописна напумпаност гума је исто тако битна, јер се трење котрљања увећава са величином додирне површине.

Популарни чланци

Електрична струја у води и ваздуху

Ако стојим до колена у води, да ли ће струја прво стићи до мене кроз ваздух или воду? Први део одговора односи се на чињеницу да је ваздух одличан изолатор према протицању електричне струје. Проводљивост воде је условљена присуством примеса. Слана вода поседује добру проводљивост, питка вода је знатно слабији проводник док је дестилована вода лош проводник, али ипак поседује нижу специфичну отпорност од ваздуха. Према томе, под нормалним условима, електрична струја не би могла да се простире кроз ваздух па је вода једина средина погодна за проток електричне струје.

Други део одговора односи се на то када услови нису уобичајени. Ту мислим на појаву муње. Да би се испољила, неопходно је да се између доњег дела облака и површине тла формира јако електрично поље тако да непроводни ваздух буде у стању плазме. То значи да су присутни молекули ваздуха у великој мери јонизовани под утицајем електричног поља. Поменуто поље врши убрзавање наелектрисања ка електричним потенцијалима супротног зна…

Галилејеве трансформације координата

Галилејеве трансформације координата помињу се у четвртом разреду гимназије и представљају увод у Лоренцове трансформације. Није једноставно искорачити из уобичајеног графичког приказа везе координата једног догађаја у односу на два инерцијална референтна система, тако да се начини анимирани запис ове релације. У првом делу је дат приказ кретања два воза у односу на на земљу. Камера је најпре у равни кретања, а затим изнад ова два тела. Зелени и црвени траг, који се простиру иза возила, представљају њихове помераје. Координате тела су представљене ознаком X. У другом делу камера је придружена зеленом возилу, тако да оно представља други инерцијални референтни систем. Положај предњег дела црвеног возила у односу на зелени воз је обележено са X ’. Према томе, координата црвеног воза у односу на земљу Xc може да се изрази помоћу координате зеленог воза у односу на земљу Xz на следећи начин: Xc = Xz + X ’

Феромагнетици, парамагнетици и дијамагнетици

Упрошћена слика електрона у атому приказује ову честицу на начин да се обрће дуж орбитале, око језгра брзином сталне бројне вредности, али и око своје осе (спин). С обзиром да је електрон наелектрисан, током кретања ствара два магнетна поља: једно настаје због кретања око језгра, а друго због обртања око своје осе. Та два магнетна поља одређују магнетни (диполни) моменти- орбитални и спински. Ова величина је својствена и честицама у атомском језгру, али је њихов допринос укупном магнетном моменту атома знатно мањи те није битан за тумачење магнетних особина материјала. Стрелицама су приказани укупни магнетни моменти атома - као збир магнетних момената електрона.


Код материјала који припадају групи дијамагнетика, атоми не поседују магнетни момент (или је веома слаб) када материјал није изложен дејству магнетног поља. Међутим, у магнетном пољу, као што анимација приказује, атоми дијамагнетика стичу магнетне моменте који су усмерени на начин да слабе магнетно поље. Типични представници …