Пређи на главни садржај

Миликенов експеримент

Роберт Миликен је познат по оксперименту који је пружио тачну вредност јединичног наелектрисања. Експеримент има предисторију, у виду покушаја Томсона и сарадника да то исто остваре. Миликен је уместо водене паре употребио уље, јер је маса капљица уља била нeпромењена у току мерења.

Видео запис

Поред цилиндричне посуде у којој су распршене капљице уља помоћу пумпице, апаратуру сачињавају: кондензатор (црвена и плава плоча) са напоном од 10 000 V и растојањем између плоча од 16 mm, оптички инструмент за посматрање и извор напона. У анимацији није приказан извор рендгенски зрака чиме је постигнуто додатно наелектрисавање капљица.


Након што се капљице уља развеју, почињу да падају ка горњој плочи кондензатора, тако да кроз плочу пролазе само оне које се простиру кроз отвор на површини плоче. Ако електрично поље није укључено, на капљице делују сила теже и Стоксова вискозна сила у ваздуху. Капљице које су ушле у простор између кондензаторских плоча у једном тренутку достижу највећу брзину кретања υ и тада је убрзање нула:
mg-Cυ = 0
Осматрање оптичким инструментом пружа могућност да се одреди највећа брзина падања υ, а тиме и маса капљица. Тај део огледа није приказан у видео запису.
Док падају, укључује се напон и поједине наелектрисане капљице q се заустављају па затим настаје промена смера кретања, а неке се крећу убрзано ка другој плочи. За капљице које се подижу, када достигну највећу брзину υ₁, важи:
mg+Cυ₁-qE = 0
Приказане једначине пружају могућност да се одреди наелектрисање капљица.
Наелектрисавање капљица постиже се распршивањем помоћу пумпице и дејством рендгенских зрака. Запазимо да се капљице не крећу једнким брзинама, јер нису подједнако наелектрисане.
Ја сам оквирно приказао и појаснио Миликенов експеримент, док детаље можете пронаћи у сваком квалитетном универзитетском уџбенику.

Популарни чланци

Електрична струја у води и ваздуху

Ако стојим до колена у води, да ли ће струја прво стићи до мене кроз ваздух или воду? Први део одговора односи се на чињеницу да је ваздух одличан изолатор према протицању електричне струје. Проводљивост воде је условљена присуством примеса. Слана вода поседује добру проводљивост, питка вода је знатно слабији проводник док је дестилована вода лош проводник, али ипак поседује нижу специфичну отпорност од ваздуха. Према томе, под нормалним условима, електрична струја не би могла да се простире кроз ваздух па је вода једина средина погодна за проток електричне струје.

Други део одговора односи се на то када услови нису уобичајени. Ту мислим на појаву муње. Да би се испољила, неопходно је да се између доњег дела облака и површине тла формира јако електрично поље тако да непроводни ваздух буде у стању плазме. То значи да су присутни молекули ваздуха у великој мери јонизовани под утицајем електричног поља. Поменуто поље врши убрзавање наелектрисања ка електричним потенцијалима супротног зна…

Галилејеве трансформације координата

Галилејеве трансформације координата помињу се у четвртом разреду гимназије и представљају увод у Лоренцове трансформације. Није једноставно искорачити из уобичајеног графичког приказа везе координата једног догађаја у односу на два инерцијална референтна система, тако да се начини анимирани запис ове релације. У првом делу је дат приказ кретања два воза у односу на на земљу. Камера је најпре у равни кретања, а затим изнад ова два тела. Зелени и црвени траг, који се простиру иза возила, представљају њихове помераје. Координате тела су представљене ознаком X. У другом делу камера је придружена зеленом возилу, тако да оно представља други инерцијални референтни систем. Положај предњег дела црвеног возила у односу на зелени воз је обележено са X ’. Према томе, координата црвеног воза у односу на земљу Xc може да се изрази помоћу координате зеленог воза у односу на земљу Xz на следећи начин: Xc = Xz + X ’

Феромагнетици, парамагнетици и дијамагнетици

Упрошћена слика електрона у атому приказује ову честицу на начин да се обрће дуж орбитале, око језгра брзином сталне бројне вредности, али и око своје осе (спин). С обзиром да је електрон наелектрисан, током кретања ствара два магнетна поља: једно настаје због кретања око језгра, а друго због обртања око своје осе. Та два магнетна поља одређују магнетни (диполни) моменти- орбитални и спински. Ова величина је својствена и честицама у атомском језгру, али је њихов допринос укупном магнетном моменту атома знатно мањи те није битан за тумачење магнетних особина материјала. Стрелицама су приказани укупни магнетни моменти атома - као збир магнетних момената електрона.


Код материјала који припадају групи дијамагнетика, атоми не поседују магнетни момент (или је веома слаб) када материјал није изложен дејству магнетног поља. Међутим, у магнетном пољу, као што анимација приказује, атоми дијамагнетика стичу магнетне моменте који су усмерени на начин да слабе магнетно поље. Типични представници …