Пређи на главни садржај

Диференцијални рачун у физици

Поштовани професоре, предавали сте ми физику у другој години (током ...) на ... смеру у ... гимназији. Ове године сам уписао ЕТФ, одсек за Софтверско инжењерство. Нисам нашао ниједан други начин да Вас контактирам изузев путем Google+ сервиса. Један од предмета у првом семестру ми је физика, па бих хтео да вас питам нешто што ми није потпуно јасно, а сматрам да ми Ви можете најбоље рећи. У гимназији нисмо никада користили изводе у физици, а они се појављују у првој области коју смо радили, кинематици, као v=ds/dt. То ми није потпуно јасно, знам да се односи на то да је први извод пута у датој тачки представља вектор тренутне брзине али ми није јасно да ли то има рачунску примену или се искључиво односи на приказ вектора брзине. Ако је у питању вектор брзине онда би требало имати једначину путање тачке па тако и наћи први извод који би представљао вектор тренутне брзине. Иако ми је ово јасно отприлике што се тиче брзине или убрзања, није ми јасно зашто се исто односи и на тренутну јачину струје i=dq/dt (ово смо радили из основа електронике). Да ли извод нема никакву рачунску примену, односно само дефинициону, тј. само дефинише шта је тренутна струја?
На питање ћу одговорити конкретним примером. Путање објеката могу да буду представљене функцијама, попут параболе, као код косог хица. Али, узмимо нешто једноставније: нека се објекат креће дуж икс осе тако да се промена положаја може представити једначином:
при чему су a и b константе. Ако постоји потреба да се одреди брзина, на пример у трећој секунди, онда морамо да диференцирамо функцију:
Ако нам је позната вредност константе a, у могућности смо да добијамо тражену брзину.
Исто се односи и на једначину која се тиче тренутне вредности јачине струје. Ако је познато на који начин се мења јачина електричне струје у проводнику (или, на пример, кондензатору) можемо одредити количину наелектрисања која протекне кроз проводник и напуни кондензатор.

Популарни чланци

Ерстедов експеримент

Хеленски мислиоци уочили су да материјали који испољавају магнетна својствапривлаче предмете начињене од гвожђа. Било им је познато да је структура камена из Магнезије попут предмета начињених од гвожђа, а привлачно својство тумачили су постојањем извесног флуида који потиче из магнета. С обзиром да је експериментално истраживање у физици заживело тек при крају епохе ренесансе, тумачење магнетизма је протицало споро. Упечатљив пример за тако нешто представља вишевековно погрешно уверења да бели лук може извршити размагнетисавање игле компаса. Због тога је члановима посаде који су руковали том направом било забрањено да једу ову намирницу! Половином XIII века, војни инжењер Пјер д Марикур вршећи експерименте открива да магнет поседује два пола, при чему се полови појављују иако се магнет преполови, а магнетна игла компаса је усмерена у правцу „небеских полова”. Он појаву приписује утицају неба, а не присуству Земљиног магнетног поља. Покушао је и да направи вечити покретач тако што је…

Електрична струја у води и ваздуху

Ако стојим до колена у води, да ли ће струја прво стићи до мене кроз ваздух или воду? Први део одговора односи се на чињеницу да је ваздух одличан изолатор према протицању електричне струје. Проводљивост воде је условљена присуством примеса. Слана вода поседује добру проводљивост, питка вода је знатно слабији проводник док је дестилована вода лош проводник, али ипак поседује нижу специфичну отпорност од ваздуха. Према томе, под нормалним условима, електрична струја не би могла да се простире кроз ваздух па је вода једина средина погодна за проток електричне струје.

Други део одговора односи се на то када услови нису уобичајени. Ту мислим на појаву муње. Да би се испољила, неопходно је да се између доњег дела облака и површине тла формира јако електрично поље тако да непроводни ваздух буде у стању плазме. То значи да су присутни молекули ваздуха у великој мери јонизовани под утицајем електричног поља. Поменуто поље врши убрзавање наелектрисања ка електричним потенцијалима супротног зна…

Феромагнетици, парамагнетици и дијамагнетици

Упрошћена слика електрона у атому приказује ову честицу на начин да се обрће дуж орбитале, око језгра брзином сталне бројне вредности, али и око своје осе (спин). С обзиром да је електрон наелектрисан, током кретања ствара два магнетна поља: једно настаје због кретања око језгра, а друго због обртања око своје осе. Та два магнетна поља одређују магнетни (диполни) моменти- орбитални и спински. Ова величина је својствена и честицама у атомском језгру, али је њихов допринос укупном магнетном моменту атома знатно мањи те није битан за тумачење магнетних особина материјала. Стрелицама су приказани укупни магнетни моменти атома - као збир магнетних момената електрона.


Код материјала који припадају групи дијамагнетика, атоми не поседују магнетни момент (или је веома слаб) када материјал није изложен дејству магнетног поља. Међутим, у магнетном пољу, као што анимација приказује, атоми дијамагнетика стичу магнетне моменте који су усмерени на начин да слабе магнетно поље. Типични представници …