Пређи на главни садржај

Водоник у атмосфери

Када сам упутио питање ђацима који похађају II разред гимназије о томе да ли су водоник и хелијум присутни у Земљиној атмосфери, одговор бољих ученика је био потврдан. Тај податак су прочитали у некаквом уџбенику географије. Сваки уџбеник садржи грешке, али ова је прилично крупна. Полазећи од учинка разних реформи нашег образовања, нисам сигуран да је било ко од оних чији је посао осмишљавање наставних планова озбиљно размишљао о томе да се поједине области изучавају у оквиру различитих предмета. Као пример наводим заједнички час социологије и физике. Следи објашњење појаве слабог присуства наведених гасова у атмосфери наше планете. 
Цртеж приказује Максвелову расподелу брзина молекула гасова при температури T = 300 K, јер се молекули не крећу једнаким брзинама. Највећи број масивнијих молекула простире се спорије:


Врх једне (било које) криве односи се на брзину којом се креће највећи број молекула - и то је највероватнија брзина. Да би молекули били у могућности да напусте гравитационо поље планете потребно је да поседују брзину већу од такозване друге космичке брзине - а у случају Земље та вредност износи 11,2 km/s. Дакле, што је вредност највероватније брзине виша и ближа бројној вредности друге космичке брзине већа је шанса да атмосфера планете буде са ниским садржајем водоника или кисеоника. Уочавамо да постоје и спори молекули, који у датом тренутку нису у могућности да напусте гравитационо поље планете. Међутим, крива расподеле брзина задржава облик упркос смањивању концентрације молекула у атмосфери тако да се број брзих молекула не мења, па се појава напуштања гравитационог поља планете наставља све док постоје довољно брзи молекули.
Молекули водоника и хелијума су, углавном, напустили атмосферу Земље, док кисеоник то чини толико споро да ће веома дуго опстати у атмосфери. С друге стране, Јупитер поседује јаче гравитационо поље те је водоник тамо веома присутан. Месец нема атмосферу у неком битном износу, јер је гравитационо поље недовољно јако да обезбеди постојање атмосфере.

Популарни чланци

Електрична струја у води и ваздуху

Ако стојим до колена у води, да ли ће струја прво стићи до мене кроз ваздух или воду? Први део одговора односи се на чињеницу да је ваздух одличан изолатор према протицању електричне струје. Проводљивост воде је условљена присуством примеса. Слана вода поседује добру проводљивост, питка вода је знатно слабији проводник док је дестилована вода лош проводник, али ипак поседује нижу специфичну отпорност од ваздуха. Према томе, под нормалним условима, електрична струја не би могла да се простире кроз ваздух па је вода једина средина погодна за проток електричне струје.

Други део одговора односи се на то када услови нису уобичајени. Ту мислим на појаву муње. Да би се испољила, неопходно је да се између доњег дела облака и површине тла формира јако електрично поље тако да непроводни ваздух буде у стању плазме. То значи да су присутни молекули ваздуха у великој мери јонизовани под утицајем електричног поља. Поменуто поље врши убрзавање наелектрисања ка електричним потенцијалима супротног зна…

Галилејеве трансформације координата

Галилејеве трансформације координата помињу се у четвртом разреду гимназије и представљају увод у Лоренцове трансформације. Није једноставно искорачити из уобичајеног графичког приказа везе координата једног догађаја у односу на два инерцијална референтна система, тако да се начини анимирани запис ове релације. У првом делу је дат приказ кретања два воза у односу на на земљу. Камера је најпре у равни кретања, а затим изнад ова два тела. Зелени и црвени траг, који се простиру иза возила, представљају њихове помераје. Координате тела су представљене ознаком X. У другом делу камера је придружена зеленом возилу, тако да оно представља други инерцијални референтни систем. Положај предњег дела црвеног возила у односу на зелени воз је обележено са X ’. Према томе, координата црвеног воза у односу на земљу Xc може да се изрази помоћу координате зеленог воза у односу на земљу Xz на следећи начин: Xc = Xz + X ’

Феромагнетици, парамагнетици и дијамагнетици

Упрошћена слика електрона у атому приказује ову честицу на начин да се обрће дуж орбитале, око језгра брзином сталне бројне вредности, али и око своје осе (спин). С обзиром да је електрон наелектрисан, током кретања ствара два магнетна поља: једно настаје због кретања око језгра, а друго због обртања око своје осе. Та два магнетна поља одређују магнетни (диполни) моменти- орбитални и спински. Ова величина је својствена и честицама у атомском језгру, али је њихов допринос укупном магнетном моменту атома знатно мањи те није битан за тумачење магнетних особина материјала. Стрелицама су приказани укупни магнетни моменти атома - као збир магнетних момената електрона.


Код материјала који припадају групи дијамагнетика, атоми не поседују магнетни момент (или је веома слаб) када материјал није изложен дејству магнетног поља. Међутим, у магнетном пољу, као што анимација приказује, атоми дијамагнетика стичу магнетне моменте који су усмерени на начин да слабе магнетно поље. Типични представници …