Пређи на главни садржај

Водоник у атмосфери

Када сам упутио питање ђацима који похађају II разред гимназије о томе да ли су водоник и хелијум присутни у Земљиној атмосфери, одговор бољих ученика је био потврдан. Тај податак су прочитали у некаквом уџбенику географије. Сваки уџбеник садржи грешке, али ова је прилично крупна. Полазећи од учинка разних реформи нашег образовања, нисам сигуран да је било ко од оних чији је посао осмишљавање наставних планова озбиљно размишљао о томе да се поједине области изучавају у оквиру различитих предмета. Као пример наводим заједнички час социологије и физике. Следи објашњење појаве слабог присуства наведених гасова у атмосфери наше планете. 
Цртеж приказује Максвелову расподелу брзина молекула гасова при температури T = 300 K, јер се молекули не крећу једнаким брзинама. Највећи број масивнијих молекула простире се спорије:


Врх једне (било које) криве односи се на брзину којом се креће највећи број молекула - и то је највероватнија брзина. Да би молекули били у могућности да напусте гравитационо поље планете потребно је да поседују брзину већу од такозване друге космичке брзине - а у случају Земље та вредност износи 11,2 km/s. Дакле, што је вредност највероватније брзине виша и ближа бројној вредности друге космичке брзине већа је шанса да атмосфера планете буде са ниским садржајем водоника или кисеоника. Уочавамо да постоје и спори молекули, који у датом тренутку нису у могућности да напусте гравитационо поље планете. Међутим, крива расподеле брзина задржава облик упркос смањивању концентрације молекула у атмосфери тако да се број брзих молекула не мења, па се појава напуштања гравитационог поља планете наставља све док постоје довољно брзи молекули.
Молекули водоника и хелијума су, углавном, напустили атмосферу Земље, док кисеоник то чини толико споро да ће веома дуго опстати у атмосфери. С друге стране, Јупитер поседује јаче гравитационо поље те је водоник тамо веома присутан. Месец нема атмосферу у неком битном износу, јер је гравитационо поље недовољно јако да обезбеди постојање атмосфере.

Коментари

Популарни чланци

Феромагнетици, парамагнетици и дијамагнетици

Упрошћена слика електрона у атому приказује ову честицу на начин да се обрће дуж орбитале, око језгра брзином сталне бројне вредности, али и око своје осе (спин). С обзиром да је електрон наелектрисан, током кретања ствара два магнетна поља: једно настаје због кретања око језгра, а друго због обртања око своје осе. Та два магнетна поља одређују магнетни (диполни) моменти- орбитални и спински. Ова величина је својствена и честицама у атомском језгру, али је њихов допринос укупном магнетном моменту атома знатно мањи те није битан за тумачење магнетних особина материјала. Стрелицама су приказани укупни магнетни моменти атома - као збир магнетних момената електрона.


Код материјала који припадају групи дијамагнетика, атоми не поседују магнетни момент (или је веома слаб) када материјал није изложен дејству магнетног поља. Међутим, у магнетном пољу, као што запис приказује, атоми дијамагнетика стичу магнетне моменте који су усмерени на начин да слабе магнетно поље. Типични представници су в…

Бернулијева једначина

Данијел Бернули се бавио физиком, математиком, астрономијом, филозофијом и медицином. Како ли му је то полазило за руком? У физици је познат као истраживач својстава флуида. Применом закона одржања енергије проистиче да је за промену кинетичке и гравитационе потенцијалне енергије делића флуида потребно да постоји рад извора енергије, који се испољава путем разлике у статичким притисцима флуида.  Облик Бернулијеве једначине у гимназијској физици подразумева флуид без трења између слојева, да није стишљив и не размењује топлотуса околином.


Постоји неколико занимљивих примера примене Бернулијеве једначине. Видео запис приказује опструјавање авионског крила помоћу приказа струјних линија. Иако ваздушна струја у овом случају није идеалан флуид, могуће је приближити Бернулијево откриће младим нараштајима.  Запажамо да се ваздушна струја цепа на предњој ивици. Део струје испод крила има једноставну путању, али путања делића изнад горњег дела је сложенија, јер је горња површина крила закривљ…

Ерстедов експеримент

Хеленски мислиоци уочили су да материјали који испољавају магнетна својствапривлаче предмете начињене од гвожђа. Било им је познато да је структура камена из Магнезије попут предмета начињених од гвожђа, а привлачно својство тумачили су постојањем извесног флуида који потиче из магнета. С обзиром да је експериментално истраживање у физици заживело тек при крају епохе ренесансе, тумачење магнетизма је протицало споро. Упечатљив пример за тако нешто представља вишевековно погрешно уверења да бели лук може извршити размагнетисавање игле компаса. Због тога је члановима посаде који су руковали том направом било забрањено да једу ову намирницу! Половином XIII века, војни инжењер Пјер д Марикур вршећи експерименте открива да магнет поседује два пола, при чему се полови појављују иако се магнет преполови, а магнетна игла компаса је усмерена у правцу „небеских полова”. Он појаву приписује утицају неба, а не присуству Земљиног магнетног поља. Покушао је и да направи вечити покретач тако што је…

Карноов циклус

На почетку индустријске револуције постојала је потреба да се унапреди рад парне машине и ефикасност. Сади Карно, физичар и официр у француској војсци, размишљао је о томе који гас/пару је потребно употребити и на какав начин да би се остварио највећи степен искоришћења. Из тог делања је проистекао други закон термодинамике, мада установљен од стране других физичара. Треба запазити да је Карно све време писао о калорику као радној супстанци парне машине - флуиду који садржи топлотну енергију и струји између објеката на различитој температури. Није први пут да се у физици стиже до нових открића помоћу погрешних претпоставки. Графички приказ машине, такозвани Карноов циклус, је уведен у физику много година касније. Приказ представља Карноову топлотну машину, на начин како је он замислио рад уређаја са највећим степеном искоришћења калорика:

Централни део записа сачињава цилиндар са радним телом. Карно није прецизно назначио о каквом флуиду се ради. Са леве стране је грејач, извор топло…