Пређи на главни садржај

Наставни програм физике

Чланак представља предлог који се тиче измене наставног програма физике у гимназији, уз услов да се сличне промене изврше и код других предмета. Полазна основа је лично уверење да је потребно прилагодити градиво које се изучава у вишим разредима гимназије - будућим студентима. 
Постојеће школовање у гимназији је у приличној мери круто према одабиру животног пута. Очекује се да петнаестогодишњаци одаберу усмерење које ће их пратити у наредне четири године, тако да прилагођеност наставних програма динамичним променама у том животном добу није присутна. Последица тога је лично незадовољство и неиспуњеност животних интересовања код дела младог нараштаја, као и потреба за похађањем приватних часова да би се надокнадило пропуштено градиво. Мој предлог је да избор усмерења буде на крају другог разреда, али и да се предвиди могућност промене интересовања код ученика на начин да је могуће, до извесне мере, извршити одабир предмета. 
Будући студенти техничких факултета траба да изучавају механику, термодинамику и механичке осцилације у већем обиму него што предвиђа постојећи програм физике, док би друге области биле присутне у мери колико је то неопходно. Они који се определе за групацију природно-математичких факултета школовање би окончали на начин који је сада присутан. За студије факултета медицинске струке битни су термодинамика, механика, акустика, оптика, атомска и нуклеарна физика. Програм намењен онима чија су интересовања окренута према друштвено-језичким наукама треба највише да садржи приказ развоја физике и утицај на друштвене односе, као и поглавља која би могла да буду на неки начин корисна. Стицање општег образовања је неопходно и корисно, али у томе не треба претеривати. 
Да би се остварила еластичност програма, треба допустити могућност да се одељења формирају према интересовањима ученика. Проблем литературе за учење је релативно једноставно решити увођењем електронских уџбеника. Чак и обезбеђивање простора није тако велика препрека како то изгледа. Али, полазна чињеница да би се овакав концепт остварио (или било шта корисно) је да залагање професора буде вредновано.

Популарни чланци

Ерстедов експеримент

Хеленски мислиоци уочили су да материјали који испољавају магнетна својствапривлаче предмете начињене од гвожђа. Било им је познато да је структура камена из Магнезије попут предмета начињених од гвожђа, а привлачно својство тумачили су постојањем извесног флуида који потиче из магнета. С обзиром да је експериментално истраживање у физици заживело тек при крају епохе ренесансе, тумачење магнетизма је протицало споро. Упечатљив пример за тако нешто представља вишевековно погрешно уверења да бели лук може извршити размагнетисавање игле компаса. Због тога је члановима посаде који су руковали том направом било забрањено да једу ову намирницу! Половином XIII века, војни инжењер Пјер д Марикур вршећи експерименте открива да магнет поседује два пола, при чему се полови појављују иако се магнет преполови, а магнетна игла компаса је усмерена у правцу „небеских полова”. Он појаву приписује утицају неба, а не присуству Земљиног магнетног поља. Покушао је и да направи вечити покретач тако што је…

Референтни систем

Анимација приказује слободан пад лопте на броду који се креће. О тој појави је размишљао изопштени свештеник Ђордано Бруно. Наслутио је да путања лопте неће бити иста у односу на посматраче на броду и копну. Истакнути историчар развоја физике Милорад Млађеновић цитира један Брунов запис: „Замислимо два човека, једног на броду у покрету, а другог изван њега. Нека обојица имају руку у истој тачки ваздуха и нека са тог истог места истовремено сваки испусти по један камен. Камен првог, не скрећући са (вертикалне) линије пашће на одређено место, док ће камен другога бити померен уназад.” 
Ако се појава посматра у односу на обалу мора као референтни систем, путања поприма изглед хоризонталног хица. Опажајући исту појаву на броду, а то је приказано у другом делу анимације, путања је попут слободног пада. Разлика је присутна, јер се камера у другом делу анимације креће заједно са бродом те поседује брзину својствену броду, док је у првом делу анимације била непокретна у односу на брод:

Феромагнетици, парамагнетици и дијамагнетици

Упрошћена слика електрона у атому приказује ову честицу на начин да се обрће дуж орбитале, око језгра брзином сталне бројне вредности, али и око своје осе (спин). С обзиром да је електрон наелектрисан, током кретања ствара два магнетна поља: једно настаје због кретања око језгра, а друго због обртања око своје осе. Та два магнетна поља одређују магнетни (диполни) моменти- орбитални и спински. Ова величина је својствена и честицама у атомском језгру, али је њихов допринос укупном магнетном моменту атома знатно мањи те није битан за тумачење магнетних особина материјала. Стрелицама су приказани укупни магнетни моменти атома - као збир магнетних момената електрона.


Код материјала који припадају групи дијамагнетика, атоми не поседују магнетни момент (или је веома слаб) када материјал није изложен дејству магнетног поља. Међутим, у магнетном пољу, као што анимација приказује, атоми дијамагнетика стичу магнетне моменте који су усмерени на начин да слабе магнетно поље. Типични представници …