Пређи на главни садржај

Топлота

Реч калорија води порекло од кованице калорик - флуидне супстанце коју, као се сматрало у XVIII веку, садрже сви објекти, а постаје предмет размене ако су на различитим температурама. Са нарастањем експерименталних чињеница калорику су додавана различита својства, тако да се дефиниција ове супстанце усложњавала и постало је јасно да треба нешто променити у схватању топлоте. Савремено схватање је проистекло из статистичке физике и развојем индустријске револуције.
Мотив приказа који следи представља шоља испуњена топлим чајем у којој се налази кашика. Присутна су три начина преношења унутрашње енергије, односно простирања топлоте:


Струјање (конвекција) је приказано подизањем водене паре изнад шоље. Црвена боја посуде означава емисију унутрашње енергије путем инфрацрвеног зрачења. Последњи део записа тиче се провођења (кондукције) кроз кашику, где су приказани атоми који осцилују око равнотежних положаја и слободни електрони. Премда је допринос електрона провођењу топлотне енергије већи у односу на атоме, у анимацији су честице третиране равноправно.

Због чега се пржени кромпирићи споро хладе?
Пре свега због присуства воде у кромпирићима. Вода поседује висок специфични топлотни капацитет, односно потребна је већа количина топлоте да би се извесна маса загрејала за 10C у поређењу са, на пример, једнаком масом камена. Обично се наводи да се вода спорије загрева (и хлади). Ова појава се тумачи релативно ниском моларном масом воде, што значи да је у јединици масе присутно више молекула. Кретања атома у молекулу воде су сложена и на то утиче апсорбована (емитована) топлота. Дакле, због великог броја молекула и сложености кретања атома у молекулу, вода поседује способност апсорпције велике количине топлоте.
Облик и величина кромирића, као и збијеност у тањиру, доприносе спором хлађењу. Ако би кромпириће исецкали свакако би се брже охладили. Можда и танка кора која се формира током пржења доприноси споријем хлађењу.

Популарни чланци

Дилатација времена

Следи видео приказ Ајнштајновог мисаоног експеримента. Светлосни сигнал простире се као плафону возила, где је постављено огледало. Први догађај је слање сигнала, а други догађај је пријем сигнала након што се одбио од огледала. Посматрач изван возила уочава два догађаја на други начин: путања сигнала ће у односу на њега бити једнакокраки троугао:

Да ли су два временска интервала једнака? Искуство нам даје потврдан одговор, али разлика ће бити присутна ако се возило креће релативистичком брзином. Може се доказати да ће временски интервал у односу на путника бити краћи - проистиче да часовник покретног посматрача спорије откуцава време.  Било би погрешно прихвати чињеницу да ће покретни часовник увек спорије откуцавати време. То не мора да буде тако. Временски интервал између два догађаја је најкраћи за оног посматрача у односу на кога се оба догађаја дешавају на истом месту. У близи масивног тела време спорије протиче. Ако галаксију схватимо као компактну масу и ту слику проширимо на …

Референтни систем

Анимација приказује слободан пад лопте на броду који се креће. О тој појави је размишљао изопштени свештеник Ђордано Бруно. Наслутио је да путања лопте неће бити иста у односу на посматраче на броду и копну. Истакнути историчар развоја физике Милорад Млађеновић цитира један Брунов запис: „Замислимо два човека, једног на броду у покрету, а другог изван њега. Нека обојица имају руку у истој тачки ваздуха и нека са тог истог места истовремено сваки испусти по један камен. Камен првог, не скрећући са (вертикалне) линије пашће на одређено место, док ће камен другога бити померен уназад.” 
Ако се појава посматра у односу на обалу мора као референтни систем, путања поприма изглед хоризонталног хица. Опажајући исту појаву на броду, а то је приказано у другом делу анимације, путања је попут слободног пада. Разлика је присутна, јер се камера у другом делу анимације креће заједно са бродом те поседује брзину својствену броду, док је у првом делу анимације била непокретна у односу на брод:

Електрична струја у води и ваздуху

Ако стојим до колена у води, да ли ће струја прво стићи до мене кроз ваздух или воду? Први део одговора односи се на чињеницу да је ваздух одличан изолатор према протицању електричне струје. Проводљивост воде је условљена присуством примеса. Слана вода поседује добру проводљивост, питка вода је знатно слабији проводник док је дестилована вода лош проводник, али ипак поседује нижу специфичну отпорност од ваздуха. Према томе, под нормалним условима, електрична струја не би могла да се простире кроз ваздух па је вода једина средина погодна за проток електричне струје.

Други део одговора односи се на то када услови нису уобичајени. Ту мислим на појаву муње. Да би се испољила, неопходно је да се између доњег дела облака и површине тла формира јако електрично поље тако да непроводни ваздух буде у стању плазме. То значи да су присутни молекули ваздуха у великој мери јонизовани под утицајем електричног поља. Поменуто поље врши убрзавање наелектрисања ка електричним потенцијалима супротног зна…

Дифракција таласа

Франческо Грималди је био језуитски свештеник и професор на Унивезитету у Болоњи. У XVII веку изводи експерименте са светлошћу која пролази кроз отвор на капку прозора. Затим је у правцу простирања зрака поставио непровидни објекат и вршио осматрање сенке. Уочио је већу ширину од очекиване, као и присуство боја на крајевима сенке. Грималди је закључио да је приказ последица тога што се светлост не простире праволинијски и појави даје назив дифракција. Наставак истраживања ове појаве од стране других научника је била испуњена недоумицама о природи светлости. Полазећи од Хајгенсовог тумачења простирања таласа, инжењер Огистен Френел и лекар Томас Јанг су пружили потпуно тумачење појаве дифракције. Дифракција је присутна код механичкихи електромагнетних таласа. Запис је направљен у контексту поглавља прве врсте поменутих таласа. Оба дела записа приказују дифракцију таласа када су отвори различитих величина и зато је величина савијања таласног фронта различита. Поменути таласни фронтови …