Пређи на главни садржај

Максвелова расподела брзина молекула

Полазећи од истраживања Рудолфа Клаузијуса, шкотски физичар Џејмс Максвел разрађује кинетичку теорију гасова математичким путем и долази до открића функционалног облика расподеле брзина молекула гасова.
Молекули гасова се крећу брзинама различитих бројних вредности. Те вредности су прилично високе. На пример, на температури од 200 C молекули ваздуха крећу се брзином у просеку око 1500 km/h. То је дупло више у односу на брзине путничких авиона.

На платформи Geogebra приказао сам графичку симулацију расподеле брзина молекула:

Брзине молекула идеалног гаса

Корисник може да одабере вредности моларне масе и температуре гаса, а на кривој је означена највероватнија брзина молекула.

Основу видео записа чини балон испуњен топлим ваздухом:

Први део односи се на расподелу брзина када ваздух није изложен пламену. На ординатној оси није прецизно наведена величина, јер је анимација намењена гимназијској популацији младих људи који похађају други разред и нису у могућности да детаљно упознају расподелу брзина молекула. Димензије молекула нису сразмерне стварној величини из разлога боље прегледности анимације. Оно што није приказано је другачији облик криве за различите гасове. 
Други део приказа тиче се ситуације након загревања ваздуха у балону. Сила теже која делује на балон у овом случају поседује мању вредност, молекули се крећу са већом средњом брзином, док је сила потиска околног ваздуха непромењена. Пратећи део анимације је упоредни график расподеле брзина молекула пре загревања и након тога.

Зашто је десни део криве шири?
Брзине молекула су ограничене апсолутном нулом са леве стране графика, док такво ограничење за молекуле чије су брзине веће од највероватније представља брзина светлости у вакууму.

Да ли би брзи молекули могли да спрже органску материју?
Да, ако су присутни у довољном броју.

Коментари

Популарни чланци

Ерстедов експеримент

Хеленски мислиоци уочили су да материјали који испољавају магнетна својства привлаче предмете начињене од гвожђа. Било им је познато да је структура камена из Магнезије попут предмета начињених од гвожђа, а привлачно својство тумачили су постојањем извесног флуида који потиче из магнета. С обзиром да је експериментално истраживање у физици заживело тек при крају епохе ренесансе, тумачење магнетизма је протицало споро. Упечатљив пример за тако нешто представља вишевековно погрешно уверења да бели лук може извршити размагнетисавање игле компаса. Због тога је члановима посаде који су руковали том направом било забрањено да једу ову намирницу! Половином XIII века, војни инжењер Пјер д Марикур вршећи експерименте открива да магнет поседује два пола, при чему се полови појављују иако се магнет преполови, а магнетна игла компаса је усмерена у правцу „небеских полова”. Он појаву приписује утицају неба, а не присуству Земљиног магнетног поља. Покушао је и да направи вечити покретач тако ш

Линеарни хармонијски осцилатор

Видео запис приказује кружне осцилације куглице и линеарне хармонијске осцилације њене сенке. Циљ је да се повуче паралела између те две врсте осцилација: Приказ осциловања објекта закаченог за опругу треба да пружи увид у то због чега се се осцилаторна кретања описују хармонијским функцијама. У првом делу је дат приказ хармонијског осцилатора који мирује. Међутим, ако кретање анализирамо у односу на други референтни систем , тако да је осцилатор у покрету, уочавамо путању која изгледа попут хармонијске функције. На сајту Геогебре је дат приказ симулације простог осцилатора и графика положаја, брзине и убрзања.

Електрична струја у води и ваздуху

Ако стојим до колена у води, да ли ће струја прво стићи до мене кроз ваздух или воду? Први део одговора односи се на чињеницу да је ваздух одличан изолатор према протицању електричне струје . Проводљивост воде је условљена присуством примеса. Слана вода поседује добру проводљивост, питка вода је знатно слабији проводник док је дестилована вода лош проводник, али ипак поседује нижу специфичну отпорност од ваздуха. Према томе, под нормалним условима, електрична струја не би могла да се простире кроз ваздух па је вода једина средина погодна за проток електричне струје. Други део одговора односи се на то када услови нису уобичајени. Ту мислим на појаву муње. Да би се испољила, неопходно је да се између доњег дела облака и површине тла формира јако електрично поље тако да непроводни ваздух буде у стању плазме. То значи да су присутни молекули ваздуха у великој мери јонизовани под утицајем електричног поља. Поменуто поље врши убрзавање наелектрисања ка електричним потенција

Једначина континуитета

Условљеност брзине протицања флуида површином попречног пресека струјне цеви први је уочио Леонардо да Винчи. Он, наравно, није изучавао струјне цеви већ је појаву уочио осматрајући протицање воде при различитим условима. Галерија Уфици у Фиренци садржи импозантну збирку његових нацрта и модела, али се Леонардово име ипак ретко помиње у контексту открића у физици - јер не постоје. Узрок томе сигурно није слабо познавање математике, јер би у том случају и Мајкл Фарадеј проживео живот као непознати књиговезац. Према томе, математичка формулација једначине није његово дело. Запис је могуће употребити као пратећи садржај наставе физике у гимназији. Струјна цев садржи три струјне линије, а свакако их може бити много више, и то што се не секу је последица ламинарног протицања флуида. Ламинарност представља неопходан услов за формулисање једначине континуитета, у облику који се наводи у гимназији. Исто тако флуид поседује сталну густину упркос промени притиска, а ни вискозност