Пређи на главни садржај

Гајгеров бројач

Бројачи (детектори) региструју радиоактивно зрачење услед присуства јонизације или побуђивања (ексцитације) електрона у атомима који сачињавају „пуњење” бројача, а од стране радиоактивног зрачења. Ако се догоди јонизација, електрони и јони се премештају ка електродама детектора и на тај начин се добија струјни импулс који се појачава. Тај сигнал представља знак да је честица „упецана”. Велики број бројача поседује могућност да измери енергију регистрованих честица. Гајгеров бројач то не може, али ипак има неке предности услед којих се и даље употребљава. Добре стране су што је јефтин и осетљив на радиоактивно зрачење. Довољно је да се створи само један јонски пар у бројачу да би се радиоактивно зрачење регистровало.
Бројачку цев сачињава метални ваљак који представља катоду и танка метална жица (у анимацији је представљена црном бојом) која се простире дуж осе бројачке цеви – анода. Између катоде и аноде је електрично поље.


Куглице плаве боје представљају смешу гасова: од 80 % до 95 % племенит гас, а преостали део сачињава алкохолна пара или неки халогени гас. Када у бројачкој цеви нису присутне стране честице нема ни јонских парова, па ни струје коју би регистровала бројачка електроника, јер је смеша гасова изолатор.
Куглица црвене боје представља страну честицу - електрон који се „упецао” и створио један или више јонских парова - електрон (црвена куглица) и позитиван јон (зелена куглица). Електрично поље раздваја електроне од позитивних јона. Електрони путују ка позитивној електроди, аноди, а позитивни јони ка катоди. Електрони стичу кинетичку енергију од електричног поља да врше секундарне јонизације гаса, а на тај начин ствара се лавина електрона која се креће ка аноди. Исто тако ствара се и лавина позитивних јона, али они не могу да изврше секундарне јонизације из разлога што су масивнији па не могу да стекну потребну кинетичку енергију за тако нешто. Лавина електрона у једном тренутку почиње да слаби, јер електрони и позитивни јони заклањају спољашње електрично поље. Присутне рекомбинације електрона и позитивних јона нисам приказао.

Популарни чланци

Електромагнетне осцилације

Најједноставнији приказ електромагнетних осцилација представља веза калема и кондензатора у струјном колу. Такво коло је присутно у многим електронским уређајима које употребљавамо.  Кондензатор је приказан у облику ваљка и у почетку је био напуњен. Позитиван знак је у складу са позицијом позитивне облоге кондензатора, а приказује и смер струје у колу. У калему настаје магнетно поље, али се постепено формира због присуства индуктивног електричног отпора. Након што се кондензатор испразни, струја самоиндукције пуни кондензатор - у складу са Ленцовим законом.



Нуклеарна магнетна резонанца

Корисници ове дијагностике највише су заинтересовани да добију информацију о евентуалним штетним последицама снимања. Ако изузмемо људе са уграђеним пејсмејкерима, не постоји нежељено дејство на организам, зато што јонизације молекула унутар ћелија људског организма нису присутне. Видео запис Ова појава тиче се утицаја спољашњег магнетног поља на протоне и неутроне у атомском језгру. С обзиром да је у људском организму водоник најобилнији и да садржи један протон, у наставку текста ће бити речи искључиво о овој честици.Због присуства наелектрисања, протон је попут малог магнета чију вредност магнетног поља одређује физичка величина позната под називом магнетни момент. Када су протони изложени дејству спољашњег магнетног поља, већина магнетних момената је усмерена попут поља. Протон је енергетски стабилнији ако је његов магнетни момент оријентисан као и вектор магнетне индукције. Протони се могу побудити, односно превести у стање са вишом енергијом, бомбардовањем радио таласима - и т…

Слагање осцилација

У делу који се тиче осцилаторног кретања, предвиђено је да се ученик упозна са основним својствима слагања осцилација, што ће касније послужити при изучавању фреквентне и амплитудне модулације електромагнетних таласа. На платформи Геогебре сам дао математички приказ слагања два осцилаторна кретања:
geogebra.org/m/szaQaJB9 Корисник је у могућности да одабере различите вредности амплитуда, кружних фреквенција и почетних фаза осцилаторних кретања, представљених тригонометријским функцијама и то је означено плавом и зеленом бојом. Црвеном бојом је дат приказ сложеног кретања.