Пређи на главни садржај

Гајгеров бројач

Бројачи (детектори) региструју радиоактивно зрачење услед присуства јонизације или побуђивања (ексцитације) електрона у атомима који сачињавају „пуњење” бројача, а од стране радиоактивног зрачења. Ако се догоди јонизација, електрони и јони се премештају ка електродама детектора и на тај начин се добија струјни импулс који се појачава. Тај сигнал представља знак да је честица „упецана”. Велики број бројача поседује могућност да измери енергију регистрованих честица. Гајгеров бројач то не може, али ипак има неке предности услед којих се и даље употребљава. Добре стране су што је јефтин и осетљив на радиоактивно зрачење. Довољно је да се створи само један јонски пар у бројачу да би се радиоактивно зрачење регистровало.
Бројачку цев сачињава метални ваљак који представља катоду и танка метална жица (у запису је представљена црном бојом) која се простире дуж осе бројачке цеви – анода. Између катоде и аноде је електрично поље.


Куглице плаве боје представљају смешу гасова: од 80 % до 95 % племенит гас, а преостали део сачињава алкохолна пара или неки халогени гас. Када у бројачкој цеви нису присутне стране честице нема ни јонских парова, па ни струје коју би регистровала бројачка електроника, јер је смеша гасова изолатор.
Куглица црвене боје представља страну честицу - електрон који се „упецао” и створио један или више јонских парова - електрон (црвена куглица) и позитиван јон (зелена куглица). Електрично поље раздваја електроне од позитивних јона. Електрони путују ка позитивној електроди, аноди, а позитивни јони ка катоди. Електрони стичу кинетичку енергију од електричног поља да врше секундарне јонизације гаса, а на тај начин ствара се лавина електрона која се креће ка аноди. Исто тако ствара се и лавина позитивних јона, али они не могу да изврше секундарне јонизације из разлога што су масивнији па не могу да стекну потребну кинетичку енергију за тако нешто. Лавина електрона у једном тренутку почиње да слаби, јер електрони и позитивни јони заклањају спољашње електрично поље. Присутне рекомбинације електрона и позитивних јона нисам приказао.

Коментари

Популарни чланци

Карноов циклус

На почетку индустријске револуције постојала је потреба да се унапреди рад парне машине и ефикасност. Сади Карно, физичар и официр у француској војсци, размишљао је о томе који гас/пару је потребно употребити и на какав начин да би се остварио највећи степен искоришћења. Из тог делања је проистекао други закон термодинамике, мада установљен од стране других физичара. Треба запазити да је Карно све време писао о калорику као радној супстанци парне машине - флуиду који садржи топлотну енергију и струји између објеката на различитој температури. Није први пут да се у физици стиже до нових открића помоћу погрешних претпоставки. Графички приказ машине, такозвани Карноов циклус, је уведен у физику много година касније. Приказ представља Карноову топлотну машину, на начин како је он замислио рад уређаја са највећим степеном искоришћења калорика:

Централни део записа сачињава цилиндар са радним телом. Карно није прецизно назначио о каквом флуиду се ради. Са леве стране је грејач, извор топло…

Експеримент Мајкелсона и Морлија

У XIX веку постојало је уверење да електромагнетне таласе преноси етар. Међутим, етар није опажен, али то није било препрека да се фама о постојању одржи дуго. Етар је поседовао крајње необичне особине и током времена својства су проширена, у складу са потребама физике.  Крајем XIX века коначно се кренуло у подухват тражења доказа о постојању етра и његовом кретању (или мировању). Међу физичарима је владало уверење да је ова наука углавном открила све тајне природе, а остало је још пар ситница да се заокружи ова грандиозна творевина. Једна од тих ситница био је етар. Нико није сумњао да постоји. Алберт Мајклсон се као дете преселио из Немачке у САД. Породица се настанила у рударској колонији, у Калифорнији, а његов отац је трговао бакалуком. Упркос сиромаштву успео је да стекне стипендију и упише Поморску академију. Десетак година касније постаје професор физике на једном универзитету и интересује се за проблем доказивања постојања етра. Успео је да убеди хемичара Едварда Морлија да …

Боров модел атома

Не дешава се често да физичар изнад улазних врата своје куће држи потковицу, а то је Нилс Бор чинио. Посао професора није баш обављао са великим ентузијазмом, али је волео да дискутује са студентима не устручавајући се да покаже да нешто не зна, а понекад би са њима решавао укрштене речи или играо стони тенис, што га је чинило популарним међу младим људима. Током Другог светског рата је био принуђен да побегне из Данске у САД, где се придружује пројекту „Менхетн“, односно тиму физичара који се бавио израдом прве нуклеарне бомбе. Након катастрофе у Јапану преобразио се у предводника оних који су се залагали за забрану коришћења нуклеарне енергије у војне сврхе.  Радерфордов ђак је учинио исто што и његов професор - надмашио је учитеља. Боров модел атома данас има једино историјски значај, али му посвећујем страницу јер представља непроцењив помак у развоју физике. У чланку о Радерфордовом моделу атома поменуо сам да је поседовао једну велику ману: такав атом би могао да постоји кратко…

Једначина континуитета

Условљеност брзине протицања флуида површином попречног пресека струјне цеви први је уочио Леонардо да Винчи. Он, наравно, није изучавао струјне цеви већ је појаву уочио осматрајући протицање воде при различитим условима. Галерија Уфици у Фиренци садржи импозантну збирку његових нацрта и модела, али се Леонардово име ипак ретко помиње у контексту открића у физици - јер не постоје. Узрок томе сигурно није слабо познавање математике, јер би у том случају и Мајкл Фарадеј проживео живот као непознати књиговезац. Према томе, математичка формулација једначине није његово дело.

Запис је могуће употребити као пратећи садржај наставе физике у гимназији. Струјна цев садржи три струјне линије, а свакако их може бити много више, и то што се не секу је последица ламинарног протицања флуида. Ламинарност представља неопходан услов за формулисање једначине континуитета, у облику који се наводи у гимназији. Исто тако флуид поседује сталну густину упркос промени притиска, а ни вискозност није присутна…