Пређи на главни садржај

Гајгеров бројач

Бројачи (детектори) региструју радиоактивно зрачење услед присуства јонизације или побуђивања (ексцитације) електрона у атомима који сачињавају „пуњење” бројача, а од стране радиоактивног зрачења. Ако се догоди јонизација, електрони и јони се премештају ка електродама детектора и на тај начин се добија струјни импулс који се појачава. Тај сигнал представља знак да је честица „упецана”. Велики број бројача поседује могућност да измери енергију регистрованих честица. Гајгеров бројач то не може, али ипак има неке предности услед којих се и даље употребљава. Добре стране су што је јефтин и осетљив на радиоактивно зрачење. Довољно је да се створи само један јонски пар у бројачу да би се радиоактивно зрачење регистровало.
Бројачку цев сачињава метални ваљак који представља катоду и танка метална жица (у анимацији је представљена црном бојом) која се простире дуж осе бројачке цеви – анода. Између катоде и аноде је електрично поље.


Куглице плаве боје представљају смешу гасова: од 80 % до 95 % племенит гас, а преостали део сачињава алкохолна пара или неки халогени гас. Када у бројачкој цеви нису присутне стране честице нема ни јонских парова, па ни струје коју би регистровала бројачка електроника, јер је смеша гасова изолатор.
Куглица црвене боје представља страну честицу - електрон који се „упецао” и створио један или више јонских парова - електрон (црвена куглица) и позитиван јон (зелена куглица). Електрично поље раздваја електроне од позитивних јона. Електрони путују ка позитивној електроди, аноди, а позитивни јони ка катоди. Електрони стичу кинетичку енергију од електричног поља да врше секундарне јонизације гаса, а на тај начин ствара се лавина електрона која се креће ка аноди. Исто тако ствара се и лавина позитивних јона, али они не могу да изврше секундарне јонизације из разлога што су масивнији па не могу да стекну потребну кинетичку енергију за тако нешто. Лавина електрона у једном тренутку почиње да слаби, јер електрони и позитивни јони заклањају спољашње електрично поље. Присутне рекомбинације електрона и позитивних јона нисам приказао.

Популарни чланци

Ерстедов експеримент

Хеленски мислиоци уочили су да материјали који испољавају магнетна својствапривлаче предмете начињене од гвожђа. Било им је познато да је структура камена из Магнезије попут предмета начињених од гвожђа, а привлачно својство тумачили су постојањем извесног флуида који потиче из магнета. С обзиром да је експериментално истраживање у физици заживело тек при крају епохе ренесансе, тумачење магнетизма је протицало споро. Упечатљив пример за тако нешто представља вишевековно погрешно уверења да бели лук може извршити размагнетисавање игле компаса. Због тога је члановима посаде који су руковали том направом било забрањено да једу ову намирницу! Половином XIII века, војни инжењер Пјер д Марикур вршећи експерименте открива да магнет поседује два пола, при чему се полови појављују иако се магнет преполови, а магнетна игла компаса је усмерена у правцу „небеских полова”. Он појаву приписује утицају неба, а не присуству Земљиног магнетног поља. Покушао је и да направи вечити покретач тако што је…

Референтни систем

Анимација приказује слободан пад лопте на броду који се креће. О тој појави је размишљао изопштени свештеник Ђордано Бруно. Наслутио је да путања лопте неће бити иста у односу на посматраче на броду и копну. Истакнути историчар развоја физике Милорад Млађеновић цитира један Брунов запис: „Замислимо два човека, једног на броду у покрету, а другог изван њега. Нека обојица имају руку у истој тачки ваздуха и нека са тог истог места истовремено сваки испусти по један камен. Камен првог, не скрећући са (вертикалне) линије пашће на одређено место, док ће камен другога бити померен уназад.” 
Ако се појава посматра у односу на обалу мора као референтни систем, путања поприма изглед хоризонталног хица. Опажајући исту појаву на броду, а то је приказано у другом делу анимације, путања је попут слободног пада. Разлика је присутна, јер се камера у другом делу анимације креће заједно са бродом те поседује брзину својствену броду, док је у првом делу анимације била непокретна у односу на брод:

Феромагнетици, парамагнетици и дијамагнетици

Упрошћена слика електрона у атому приказује ову честицу на начин да се обрће дуж орбитале, око језгра брзином сталне бројне вредности, али и око своје осе (спин). С обзиром да је електрон наелектрисан, током кретања ствара два магнетна поља: једно настаје због кретања око језгра, а друго због обртања око своје осе. Та два магнетна поља одређују магнетни (диполни) моменти- орбитални и спински. Ова величина је својствена и честицама у атомском језгру, али је њихов допринос укупном магнетном моменту атома знатно мањи те није битан за тумачење магнетних особина материјала. Стрелицама су приказани укупни магнетни моменти атома - као збир магнетних момената електрона.


Код материјала који припадају групи дијамагнетика, атоми не поседују магнетни момент (или је веома слаб) када материјал није изложен дејству магнетног поља. Међутим, у магнетном пољу, као што анимација приказује, атоми дијамагнетика стичу магнетне моменте који су усмерени на начин да слабе магнетно поље. Типични представници …