Пређи на главни садржај

Стојећи таласи у атому

Аустријанац Ервин Шредингер је био уверен да се модел атома не сме засновати на једној непознаници која је била предмет расправе међу физичарима с почетка XX века: прелазима електрона (квантним скоковима) с једне љуске на другу. По њему, физика микро света треба да буде утемељена на де Брољевим таласима материје, јер су доступни опажању. У складу са Шредингеровом таласном механиком, ако се електрон у атому третира као талас и ако се узме у обзир да се простире у ограниченом простору, у могућности смо да ову појаву упоредимо са настанком стојећег таласа. То значи да било која путања електрона представља место конструктивне интерференције де Брољевог таласа (електрона).
Шредингер је сматрао да је емитовање фотона последица истовременог дејства два стојећа таласа у атому, а њихова интерференција утиче да настане. Његов модел успешно је објаснио спектар атома водоника, али није могао да се усклади са Планковим открићем кваната енергије. 

Цитираћу делић расправе Бора и Шредингера о овој теми, онако како је навео Хајзенберг у аутобиографској књизи „Физика и метафизика”:
Шредингер: „Да ли се прелаз електрона врши поступно или нагло? Ако се врши поступно, електрон мора поступно да мења фреквенцију свог обртања и своју енергију... Постављају се питања: Како се електрон креће током скока? Који закони одређују његово кретање током скока? Дакле, цела та представа о квантним скоковима је напросто бесмислица.”
Бор: „Да, у овоме што говорите потпуно сте у праву. Али то ипак не доказује да квантни скокови не постоје. То указује да их не можемо себи представити.. Ви говорите, на пример, о емитовању зрачења од стране атома, или, уопштено, о узајамном дејству атома и спољашњег поља зрачења и мислите да би се претпоставком о постојању таласи материје и изостанку квантних скокова одстраниле потешкоће... Енергија атома прима кванте и мења се скоковито. Нећете ваљда озбиљно да доведете у питање целокупне темеље квантне теорије.”

Популарни чланци

Електрична струја у води и ваздуху

Ако стојим до колена у води, да ли ће струја прво стићи до мене кроз ваздух или воду? Први део одговора односи се на чињеницу да је ваздух одличан изолатор према протицању електричне струје. Проводљивост воде је условљена присуством примеса. Слана вода поседује добру проводљивост, питка вода је знатно слабији проводник док је дестилована вода лош проводник, али ипак поседује нижу специфичну отпорност од ваздуха. Према томе, под нормалним условима, електрична струја не би могла да се простире кроз ваздух па је вода једина средина погодна за проток електричне струје.

Други део одговора односи се на то када услови нису уобичајени. Ту мислим на појаву муње. Да би се испољила, неопходно је да се између доњег дела облака и површине тла формира јако електрично поље тако да непроводни ваздух буде у стању плазме. То значи да су присутни молекули ваздуха у великој мери јонизовани под утицајем електричног поља. Поменуто поље врши убрзавање наелектрисања ка електричним потенцијалима супротног зна…

Феромагнетици, парамагнетици и дијамагнетици

Упрошћена слика електрона у атому приказује ову честицу на начин да се обрће дуж орбитале, око језгра брзином сталне бројне вредности, али и око своје осе (спин). С обзиром да је електрон наелектрисан, током кретања ствара два магнетна поља: једно настаје због кретања око језгра, а друго због обртања око своје осе. Та два магнетна поља одређују магнетни (диполни) моменти- орбитални и спински. Ова величина је својствена и честицама у атомском језгру, али је њихов допринос укупном магнетном моменту атома знатно мањи те није битан за тумачење магнетних особина материјала. Стрелицама су приказани укупни магнетни моменти атома - као збир магнетних момената електрона.


Код материјала који припадају групи дијамагнетика, атоми не поседују магнетни момент (или је веома слаб) када материјал није изложен дејству магнетног поља. Међутим, у магнетном пољу, као што запис приказује, атоми дијамагнетика стичу магнетне моменте који су усмерени на начин да слабе магнетно поље. Типични представници су в…

Миликенов експеримент

Роберт Миликен је познат по оксперименту који је пружио тачну вредност јединичног наелектрисања. Експеримент има предисторију, у виду покушаја Томсона и сарадника да то исто остваре. Миликен је уместо водене паре употребио уље, јер је маса капљица уља била нeпромењена у току мерења. Поред цилиндричне посуде у којој су распршене капљице уља помоћу пумпице, апаратуру сачињавају: кондензатор (црвена и плава плоча) са напоном од 10 000 V и растојањем између плоча од 16 mm, оптички инструмент за посматрање и извор напона. У анимацији није приказан извор рендгенски зрака чиме је постигнуто додатно наелектрисавање капљица.

Након што се капљице уља развеју, почињу да падају ка горњој плочи кондензатора, тако да кроз плочу пролазе само оне које се простиру кроз отвор на површини плоче. Ако електрично поље није укључено, на капљице делују сила теже и Стоксова вискозна сила у ваздуху. Капљице које су ушле у простор између кондензаторских плоча у једном тренутку достижу највећу брзину кретања υ …

Инерцијалне силе

Разумевање појма инерцијалних сила представља изазов за ђаке у првом разреду гимназије. Моје мишљење је да та материја не би смела да се појављује у настави физике намењеној петнаестогодишњацима. Потребно је извршити реформу гимназије на начин да ђаци у вишим разредима, након што донесу неку оквирну одлуку о будућим студијама, упознају градиво за чије разумевање је потребно уложити више времена или захтева већу зрелост. Видео запис Запис приказује кутију у возилу које се креће равномерно убрзано, али тако да је трење између кутије и подлоге у тој мери слабо да се може занемарити. У првом делу камера мирује. На кутију делују сила теже и сила реакције подлоге па кутија мирује у односу на тог посматрача. Други део анимације приказује кутију из перспективе камере која се креће једнаким убрзање као и возило.


Непокретни посматрач тумачи мировање кутије тиме што не постојe силe у хоризонталном правцу. Ако се посматрач креће убрзањем попут возила, уочиће померање кутије у смеру који је супро…