Пређи на главни садржај

Радиоактивност

Ако честице које сачињавају атомско језгро не поседују довољно високу енергију узајамне везе, стварају се услови да се догоди појава позната под називом радиоактивност (радиоактивни распад). У том случају језгро емитује једну или више честица. Проучавање радиоактивности је започето код језгара код којих се преображај дешава спонтано, а касније је појава индукована путем нуклеарних реакција

Видео запис


Први део записа тиче се емисије алфа честице, језгра атома хелијума, из атомског језгра. Преображај језгра путем алфа распада је могућ под условом да је маса атома родитеља већа од збира маса атома потомка и атома хелијума. Разлика у масама највећим делом се претвара у кинетичку енергију алфа честице. Након што напусти језгро ступа у дејство са честицама средине и јонизује их, губи енергију кретања, а затим захвата два слободна електрона и постаје атом хелијума. 
Други део представља електронски бета распад. Преображај се остварује помоћу слабе нуклеарне силе. И за овај распад је својствено да маса атома родитељ мора да буде већа од масе атома потомка. Електрон поседује мању масу у односу на алфа честицу па је његова продорност углавном већа, а путања кривудава. Током проласка кроз материјалну средину врши јонизације и побуђивања честица средине, а током успоравања емитује електромагнетно зрачење. Када изгуби кинетичку енергију, електрон углавном бива захваћени од атома средине.
Позитронски бета распад је донекле сличам претходном, али поседује карактеристику која није присутна код електронског распада: протон, честица мање масе у односу на неутрон, преображава се у неутрон и позитрон. Како је то могуће? Изван језгра овакав процес није могућ, али у језгру јесте, јер протон узима енергију мировања од нуклеарног поља јаке силе и преображај се дешава. Ван језгра протон није у могућности да узме енергију за тако нешто па је протон стабилан.
На крају сам приказао гама распад: појављује као пратећа појава претходно наведених распада, након што језгро потомак остане у побуђеном стању. Гама електромагнетно зрачење губи енергију путем неколико механизама: фотоефектом или Комптоновим расејавањем или стварањем електронско-позитронског пара у близини атомског језгра. 
Запазимо присуство закона одржања импулса у току распада.

Коментари

Популарни чланци

Феромагнетици, парамагнетици и дијамагнетици

Упрошћена слика електрона у атому приказује ову честицу на начин да се обрће дуж орбитале, око језгра брзином сталне бројне вредности, али и око своје осе (спин). С обзиром да је електрон наелектрисан, током кретања ствара два магнетна поља: једно настаје због кретања око језгра, а друго због обртања око своје осе. Та два магнетна поља одређују магнетни (диполни) моменти- орбитални и спински. Ова величина је својствена и честицама у атомском језгру, али је њихов допринос укупном магнетном моменту атома знатно мањи те није битан за тумачење магнетних особина материјала. Стрелицама су приказани укупни магнетни моменти атома - као збир магнетних момената електрона.


Код материјала који припадају групи дијамагнетика, атоми не поседују магнетни момент (или је веома слаб) када материјал није изложен дејству магнетног поља. Међутим, у магнетном пољу, као што запис приказује, атоми дијамагнетика стичу магнетне моменте који су усмерени на начин да слабе магнетно поље. Типични представници су в…

Бернулијева једначина

Данијел Бернули се бавио физиком, математиком, астрономијом, филозофијом и медицином. Како ли му је то полазило за руком? У физици је познат као истраживач својстава флуида. Применом закона одржања енергије проистиче да је за промену кинетичке и гравитационе потенцијалне енергије делића флуида потребно да постоји рад извора енергије, који се испољава путем разлике у статичким притисцима флуида.  Облик Бернулијеве једначине у гимназијској физици подразумева флуид без трења између слојева, да није стишљив и не размењује топлотуса околином.


Постоји неколико занимљивих примера примене Бернулијеве једначине. Видео запис приказује опструјавање авионског крила помоћу приказа струјних линија. Иако ваздушна струја у овом случају није идеалан флуид, могуће је приближити Бернулијево откриће младим нараштајима.  Запажамо да се ваздушна струја цепа на предњој ивици. Део струје испод крила има једноставну путању, али путања делића изнад горњег дела је сложенија, јер је горња површина крила закривљ…

Ерстедов експеримент

Хеленски мислиоци уочили су да материјали који испољавају магнетна својствапривлаче предмете начињене од гвожђа. Било им је познато да је структура камена из Магнезије попут предмета начињених од гвожђа, а привлачно својство тумачили су постојањем извесног флуида који потиче из магнета. С обзиром да је експериментално истраживање у физици заживело тек при крају епохе ренесансе, тумачење магнетизма је протицало споро. Упечатљив пример за тако нешто представља вишевековно погрешно уверења да бели лук може извршити размагнетисавање игле компаса. Због тога је члановима посаде који су руковали том направом било забрањено да једу ову намирницу! Половином XIII века, војни инжењер Пјер д Марикур вршећи експерименте открива да магнет поседује два пола, при чему се полови појављују иако се магнет преполови, а магнетна игла компаса је усмерена у правцу „небеских полова”. Он појаву приписује утицају неба, а не присуству Земљиног магнетног поља. Покушао је и да направи вечити покретач тако што је…

Карноов циклус

На почетку индустријске револуције постојала је потреба да се унапреди рад парне машине и ефикасност. Сади Карно, физичар и официр у француској војсци, размишљао је о томе који гас/пару је потребно употребити и на какав начин да би се остварио највећи степен искоришћења. Из тог делања је проистекао други закон термодинамике, мада установљен од стране других физичара. Треба запазити да је Карно све време писао о калорику као радној супстанци парне машине - флуиду који садржи топлотну енергију и струји између објеката на различитој температури. Није први пут да се у физици стиже до нових открића помоћу погрешних претпоставки. Графички приказ машине, такозвани Карноов циклус, је уведен у физику много година касније. Приказ представља Карноову топлотну машину, на начин како је он замислио рад уређаја са највећим степеном искоришћења калорика:

Централни део записа сачињава цилиндар са радним телом. Карно није прецизно назначио о каквом флуиду се ради. Са леве стране је грејач, извор топло…