Пређи на главни садржај

Радиоактивност

Ако честице које сачињавају атомско језгро не поседују довољно високу енергију узајамне везе, стварају се услови да се догоди појава позната под називом радиоактивност (радиоактивни распад). У том случају језгро емитује једну или више честица. Проучавање радиоактивности је започето код језгара код којих се преображај дешава спонтано, а касније је појава индукована путем нуклеарних реакција

Видео запис


Први део записа тиче се емисије алфа честице, језгра атома хелијума, из атомског језгра. Преображај језгра путем алфа распада је могућ под условом да је маса атома родитеља већа од збира маса атома потомка и атома хелијума. Разлика у масама највећим делом се претвара у кинетичку енергију алфа честице. Након што напусти језгро ступа у дејство са честицама средине и јонизује их, губи енергију кретања, а затим захвата два слободна електрона и постаје атом хелијума. 
Други део представља електронски бета распад. Преображај се остварује помоћу слабе нуклеарне силе. И за овај распад је својствено да маса атома родитељ мора да буде већа од масе атома потомка. Електрон поседује мању масу у односу на алфа честицу па је његова продорност углавном већа, а путања кривудава. Током проласка кроз материјалну средину врши јонизације и побуђивања честица средине, а током успоравања емитује електромагнетно зрачење. Када изгуби кинетичку енергију, електрон углавном бива захваћени од атома средине.
Позитронски бета распад је донекле сличам претходном, али поседује карактеристику која није присутна код електронског распада: протон, честица мање масе у односу на неутрон, преображава се у неутрон и позитрон. Како је то могуће? Изван језгра овакав процес није могућ, али у језгру јесте, јер протон узима енергију мировања од нуклеарног поља јаке силе и преображај се дешава. Ван језгра протон није у могућности да узме енергију за тако нешто па је протон стабилан.
На крају сам приказао гама распад: појављује као пратећа појава претходно наведених распада, након што језгро потомак остане у побуђеном стању. Гама електромагнетно зрачење губи енергију путем неколико механизама: фотоефектом или Комптоновим расејавањем или стварањем електронско-позитронског пара у близини атомског језгра. 
Запазимо присуство закона одржања импулса у току распада.

Популарни чланци

Електрична струја у води и ваздуху

Ако стојим до колена у води, да ли ће струја прво стићи до мене кроз ваздух или воду? Први део одговора односи се на чињеницу да је ваздух одличан изолатор према протицању електричне струје. Проводљивост воде је условљена присуством примеса. Слана вода поседује добру проводљивост, питка вода је знатно слабији проводник док је дестилована вода лош проводник, али ипак поседује нижу специфичну отпорност од ваздуха. Према томе, под нормалним условима, електрична струја не би могла да се простире кроз ваздух па је вода једина средина погодна за проток електричне струје.

Други део одговора односи се на то када услови нису уобичајени. Ту мислим на појаву муње. Да би се испољила, неопходно је да се између доњег дела облака и површине тла формира јако електрично поље тако да непроводни ваздух буде у стању плазме. То значи да су присутни молекули ваздуха у великој мери јонизовани под утицајем електричног поља. Поменуто поље врши убрзавање наелектрисања ка електричним потенцијалима супротног зна…

Феромагнетици, парамагнетици и дијамагнетици

Упрошћена слика електрона у атому приказује ову честицу на начин да се обрће дуж орбитале, око језгра брзином сталне бројне вредности, али и око своје осе (спин). С обзиром да је електрон наелектрисан, током кретања ствара два магнетна поља: једно настаје због кретања око језгра, а друго због обртања око своје осе. Та два магнетна поља одређују магнетни (диполни) моменти- орбитални и спински. Ова величина је својствена и честицама у атомском језгру, али је њихов допринос укупном магнетном моменту атома знатно мањи те није битан за тумачење магнетних особина материјала. Стрелицама су приказани укупни магнетни моменти атома - као збир магнетних момената електрона.


Код материјала који припадају групи дијамагнетика, атоми не поседују магнетни момент (или је веома слаб) када материјал није изложен дејству магнетног поља. Међутим, у магнетном пољу, као што запис приказује, атоми дијамагнетика стичу магнетне моменте који су усмерени на начин да слабе магнетно поље. Типични представници су в…

Миликенов експеримент

Роберт Миликен је познат по оксперименту који је пружио тачну вредност јединичног наелектрисања. Експеримент има предисторију, у виду покушаја Томсона и сарадника да то исто остваре. Миликен је уместо водене паре употребио уље, јер је маса капљица уља била нeпромењена у току мерења. Поред цилиндричне посуде у којој су распршене капљице уља помоћу пумпице, апаратуру сачињавају: кондензатор (црвена и плава плоча) са напоном од 10 000 V и растојањем између плоча од 16 mm, оптички инструмент за посматрање и извор напона. У анимацији није приказан извор рендгенски зрака чиме је постигнуто додатно наелектрисавање капљица.

Након што се капљице уља развеју, почињу да падају ка горњој плочи кондензатора, тако да кроз плочу пролазе само оне које се простиру кроз отвор на површини плоче. Ако електрично поље није укључено, на капљице делују сила теже и Стоксова вискозна сила у ваздуху. Капљице које су ушле у простор између кондензаторских плоча у једном тренутку достижу највећу брзину кретања υ …

Инерцијалне силе

Разумевање појма инерцијалних сила представља изазов за ђаке у првом разреду гимназије. Моје мишљење је да та материја не би смела да се појављује у настави физике намењеној петнаестогодишњацима. Потребно је извршити реформу гимназије на начин да ђаци у вишим разредима, након што донесу неку оквирну одлуку о будућим студијама, упознају градиво за чије разумевање је потребно уложити више времена или захтева већу зрелост. Видео запис Запис приказује кутију у возилу које се креће равномерно убрзано, али тако да је трење између кутије и подлоге у тој мери слабо да се може занемарити. У првом делу камера мирује. На кутију делују сила теже и сила реакције подлоге па кутија мирује у односу на тог посматрача. Други део анимације приказује кутију из перспективе камере која се креће једнаким убрзање као и возило.


Непокретни посматрач тумачи мировање кутије тиме што не постојe силe у хоризонталном правцу. Ако се посматрач креће убрзањем попут возила, уочиће померање кутије у смеру који је супро…