Пређи на главни садржај

Луминесценција

Шта садрже светлећи штапићи кад тако светле?
Објекти могу да емитују електромагнетно зрачење услед тога што поседују унутрашњу енергију, и тада је реч о топлотном зрачењу, или током прелаза електрона између енергетских нивоа у атому, односно молекулу - назовимо га хладно зрачење. Луминесцентно зрачење припада другој групи.
Електрон након побуде не мора да се врати директно у основно стање већ постоји вероватноћа да пређе на други нижи ниво. Током прелаза емитује се инфрацрвено зрачење, а након што се електрон врати у основно стање емитује се фотон ниже енергије у односу на онај који је извршио побуду. То што одећа постаје „блиставо бела” након употребе детерџената представља пример за флуоресценцију.
Постоји могућност да електрон пређе на енергетски ниво где ће се задржати дуго. Такво својство се употребљава код материјала који светлуцају у мраку - попут оних који се користе у саобраћају, за обележавање саобраћајних средстава или као додатак на униформама запослених у комуналним службама.


Штапићи емитују светлост услед појаве луминесценције. У њима су присутна једињења која ступају у реакцију када се штапић савије или удари. Након реакције електрони у молекулима су у стању енергетске побуђености, а то је нестабилно стање па постоји тежња да се спусте на нижи енергетски ниво. Том приликом емитују се фотони, односно штапић светли. И свици емитују светлост због присутва хемијске реакције.

Коментари

Популарни чланци

Електромагнетне осцилације

Најједноставнији приказ електромагнетних осцилација представља веза калема и кондензатора у струјном колу. Такво коло је присутно у многим електронским уређајима које употребљавамо.  Кондензатор је приказан у облику ваљка и у почетку је био напуњен. Позитиван знак је у складу са позицијом позитивне облоге кондензатора, а приказује и смер струје у колу. У калему настаје магнетно поље, али се постепено формира због присуства индуктивног електричног отпора. Након што се кондензатор испразни, струја самоиндукције пуни кондензатор - у складу са Ленцовим законом.



Референтни систем

Анимација приказује слободан пад лопте на броду који се креће. О тој појави је размишљао изопштени свештеник Ђордано Бруно. Наслутио је да путања лопте неће бити иста у односу на посматраче на броду и копну. Истакнути историчар развоја физике Милорад Млађеновић цитира један Брунов запис: „Замислимо два човека, једног на броду у покрету, а другог изван њега. Нека обојица имају руку у истој тачки ваздуха и нека са тог истог места истовремено сваки испусти по један камен. Камен првог, не скрећући са (вертикалне) линије пашће на одређено место, док ће камен другога бити померен уназад.” 
Ако се појава посматра у односу на обалу мора као референтни систем, путања поприма изглед хоризонталног хица. Опажајући исту појаву на броду, а то је приказано у другом делу анимације, путања је попут слободног пада. Разлика је присутна, јер се камера у другом делу анимације креће заједно са бродом те поседује брзину својствену броду, док је у првом делу анимације била непокретна у односу на брод:

Узајамна индукција

Док је обављао експерименте који су довели до открића електромагнетне индукције, Мајкл Фарадеј би поставио два калема, један наспрам другог, и запазио је да калем са батеријомствара струју у другом калему при укључењу/искључењу батерије. Исто тако је постављао језгро начињено од гвожђа у оба калема и уочио је појачање ефекта. Видео запис приказује индуковање струје у калему с леве стране због промене флукса магнетног поља који потиче од десног калема:



Смер индуковане струје у десном калему је у складу са Ленцовим законом. Предуслов настанка индуковане струје је електромоторна сила: ε = - NΔΦ/Δt  Промена флукса је сразмерна промени јачине струје (Δί) у калему с леве стране: ΔΦ = MΔί при чему је M коефицијент узајамне индукције који зависи од облика и величине оба калема, као и од броја навојака и узајамног положаја. Подразумева се да десни калем индукује струју у другом калему, што није приказано у анимацији, али коефицијент самоиндукције калема с леве стране једнак је оном с десне ст…

Линеарни хармонијски осцилатор

Видео запис приказује кружне осцилације куглице и линеарне хармонијске осцилације њене сенке. Циљ је да се повуче паралела између те две врсте осцилација:


Приказ осциловања објекта закаченог за опругу треба да пружи увид у то због чега се се осцилаторна кретања описују хармонијским функцијама.

У првом делу је дат приказ хармонијског осцилатора који мирује. Међутим, ако кретање анализирамо у односу на други референтни систем, тако да је осцилатор у покрету, уочавамо путању која изгледа попут хармонијске функције. На сајту Геогебре је дат приказ симулације простог осцилатора и графика положаја, брзине и убрзања.