Пређи на главни садржај

Квантни бројеви

Боров модел атома данас има једино историјску вредност. Савремено схватање физике је да су положаји електрона на орбитама могући са великим степеном извесности, али постоји вероватноћа да се нађу и изван тога - што је мање вероватно. Међутим, највеће вредности вероватноћа не морају да се поклапају са полупречницима орбита. 
Могући положаји електрона у атому представљају електронске облаке:



  • Главни квантни број n је уведен од стране Бора и одређује вредност енергије електрона у атому, али и више од тога: његову брзину и удаљеност у односу на језгро. Овај квантни број одређује и величину атома, а поседује целобројне вредности. Његове вредности хемичари означавају са: K, L, М... 
  • Орбитални квантни број l је одговоран за облик електронског облака, а одређује и бројну вредност орбиталног момента импулса који је квантован. Хемичари употребљавају ознаке: s, p, d... 
  • Магнетни квантни број mₗ одређује оријентацију електронског облака у простору. Анимација је приказала три просторна распореда p облака. Назив за овај квантни број потиче од различитог понашања облака са истим орбиталним квантним бројем у магнетном пољу 
  • У експериментима који су вршени двадесетих година прошлог века уочена је необична појава која није проистицала из квантне теорије: при проласку атома водоника кроз магнетно поље, атоми су се кретали дуж две путање иако су поседовали једнаке орбиталне и магнетне квантне бројеве. То се могло уочити чак и када је вредност орбиталног момента електрона била једнака нули. Дакле, постојао је још један квантни број, поред три позната, и то је доказао енглески физичар Пол Дирак. Поред орбиталног момента импулса, електрон поседује и сопствени момент импулса - познат под краћим називом спин - који се обично се представља као ротација честице око своје осе. Међутим, то је упрошћен приказ ове појаве, јер да је спин заиста то што се приказује магнетно поље би утицало на брзину ротације (величину спина), а то се не дешава. Дирак је установио да спински квантни број електрона мора да буде: s = 1/2

Да ли електрони у атому емитују гама зрачење?
Не. Гама зрачење потиче из атомског језгра, када нуклеони прелазе из побуђеног стања у стање ниже енергије.

Коментари

Популарни чланци

Узајамна индукција

Док је обављао експерименте који су довели до открића електромагнетне индукције , Мајкл Фарадеј би поставио два калема, један наспрам другог, и запазио је да калем са батеријом ствара струју у другом калему при укључењу/искључењу батерије. Исто тако је постављао језгро начињено од гвожђа у оба калема и уочио је појачање ефекта. Видео запис приказује индуковање струје у калему с леве стране због промене флукса магнетног поља који потиче од десног калема: Смер индуковане струје у десном калему је у складу са Ленцовим законом . Предуслов настанка индуковане струје је електромоторна сила: ε = - NΔΦ/Δt  Промена флукса је сразмерна промени јачине струје ( Δί ) у калему с леве стране: ΔΦ = MΔί при чему је M коефицијент узајамне индукције који зависи од облика и величине оба калема, као и од броја навојака и узајамног положаја. Подразумева се да десни калем индукује струју у другом калему, што није приказано у анимацији, али коефицијент самоиндукције калема с леве с

Ерстедов експеримент

Хеленски мислиоци уочили су да материјали који испољавају магнетна својства привлаче предмете начињене од гвожђа. Било им је познато да је структура камена из Магнезије попут предмета начињених од гвожђа, а привлачно својство тумачили су постојањем извесног флуида који потиче из магнета. С обзиром да је експериментално истраживање у физици заживело тек при крају епохе ренесансе, тумачење магнетизма је протицало споро. Упечатљив пример за тако нешто представља вишевековно погрешно уверења да бели лук може извршити размагнетисавање игле компаса. Због тога је члановима посаде који су руковали том направом било забрањено да једу ову намирницу! Половином XIII века, војни инжењер Пјер д Марикур вршећи експерименте открива да магнет поседује два пола, при чему се полови појављују иако се магнет преполови, а магнетна игла компаса је усмерена у правцу „небеских полова”. Он појаву приписује утицају неба, а не присуству Земљиног магнетног поља. Покушао је и да направи вечити покретач тако ш

Референтни систем

Анимација приказује слободан пад лопте на броду који се креће. О тој појави је размишљао изопштени свештеник Ђордано Бруно. Наслутио је да путања лопте неће бити иста у односу на посматраче на броду и копну. Истакнути историчар развоја физике Милорад Млађеновић цитира један Брунов запис: „Замислимо два човека, једног на броду у покрету, а другог изван њега. Нека обојица имају руку у истој тачки ваздуха и нека са тог истог места истовремено сваки испусти по један камен. Камен првог, не скрећући са (вертикалне) линије пашће на одређено место, док ће камен другога бити померен уназад.”  Ако се појава посматра у односу на обалу мора као референтни систем, путања поприма изглед хоризонталног хица. Опажајући исту појаву на броду, а то је приказано у другом делу анимације, путања је попут слободног пада. Разлика је присутна, јер се камера у другом делу анимације креће заједно са бродом те поседује брзину својствену броду, док је у првом делу анимације била непокретна у односу на брод

Конструкција ликова код сочива

Симулација се односи на преламање светлости код танких сочива - објеката већег индекса преламања у односу на ваздух. Запазимо да је у горњем десном квадранту пружена могућност избора: расипно или сабирно сочиво. geogebra.org/m/mqUQvccR Запажамо присуство две жиже F , јер предмет може да се постави са обе стране сочива. Попут огледала , жижна даљина f представља растојање од жиже до центра сочива. Дата су два карактеристична зрака. Сабирна сочива дају умањен, изврнут и реалан лик ако је предмет удаљен више од две жижне даљине у односу на сочиво. Ако је предмет удаљен више од једне жижне даљине, а мање од две жижне даљине у односу на сочиво, лик је увећан, изврнут и реалан. Ако је предмет испред жиже, лик је увећан, имагинаран и усправан. Расипна сочива увек стварају умањене, усправне и имагинарне ликове.