Пређи на главни садржај

Феромагнетици, парамагнетици и дијамагнетици

Упрошћена слика електрона у атому приказује ову честицу на начин да се обрће дуж орбитале, око језгра брзином сталне бројне вредности, али и око своје осе (спин). С обзиром да је електрон наелектрисан, током кретања ствара два магнетна поља: једно настаје због кретања око језгра, а друго због обртања око своје осе. Та два магнетна поља одређују магнетни (диполни) моменти - орбитални и спински.
Ова величина је својствена и честицама у атомском језгру, али је њихов допринос укупном магнетном моменту атома знатно мањи те није битан за тумачење магнетних особина материјала. Стрелицама су приказани укупни магнетни моменти атома - као збир магнетних момената електрона.


Код материјала који припадају групи дијамагнетика, атоми не поседују магнетни момент (или је веома слаб) када материјал није изложен дејству магнетног поља. Међутим, у магнетном пољу, као што запис приказује, атоми дијамагнетика стичу магнетне моменте који су усмерени на начин да слабе магнетно поље. Типични представници су вода, бакар или сребро.

Други део тиче се парамагнетизма, појаве која је присутна у материјалима чији атоми поседују магнетне моменте без обзира на присуство спољашњег магнетног поља. Уочавамо да су магнетни моменти атома распоређени хаотично све док не потпадну под утицај поља. С обзиром на оријентацију магнетних момената у присуству поља, у парамагнетицима је спољашње магнетно поље појачано. Усмерена оријентација је присутна све док је парамагнетник под дејством магнетног поља, а након искључења поља магнетни моменти су поново оријентисани насумично. Алуминијум је пример за ову врсту магнетика.

Свега неколико елемената, попут гвожђа и никла, испољавају својство сталног магнетизма - то су феромагнетици. Али зато постоји много њихових легура које дају јача магнетна поља у односу на „чисте” материјале. Видео запис приказује да су магнетни моменти једнако оријентисани једино унутар малих запремина које сачињавају материјал, а те запримине носе назив домени. Ако се сагледа цео материјал, домени пружају различите оријентације магнетних момената атома те материјал не испољава магнетна својства (или то слабо чини). Након излагању спољашњем магнетном пољу, магнетни моменти атома се усмеравају у правцу поља. Престанком дејства поља материјал остаје намагнетисан. Очигледно је да тих неколико елемената поседују нешто што их издваја од парамагнетика: присутно је специфично спрезање спинова електрона атома, а то утиче на оријентацију унутар појединачних домена.

Поступак кувања на шпоретима познатим као индукционе плоче заснива се на употреби посуђа начињених од феромагнетног материјала.

Коментари

Популарни чланци

Узајамна индукција

Док је обављао експерименте који су довели до открића електромагнетне индукције , Мајкл Фарадеј би поставио два калема, један наспрам другог, и запазио је да калем са батеријом ствара струју у другом калему при укључењу/искључењу батерије. Исто тако је постављао језгро начињено од гвожђа у оба калема и уочио је појачање ефекта. Видео запис приказује индуковање струје у калему с леве стране због промене флукса магнетног поља који потиче од десног калема: Смер индуковане струје у десном калему је у складу са Ленцовим законом . Предуслов настанка индуковане струје је електромоторна сила: ε = - NΔΦ/Δt  Промена флукса је сразмерна промени јачине струје ( Δί ) у калему с леве стране: ΔΦ = MΔί при чему је M коефицијент узајамне индукције који зависи од облика и величине оба калема, као и од броја навојака и узајамног положаја. Подразумева се да десни калем индукује струју у другом калему, што није приказано у анимацији, али коефицијент самоиндукције калема с леве с

Ерстедов експеримент

Хеленски мислиоци уочили су да материјали који испољавају магнетна својства привлаче предмете начињене од гвожђа. Било им је познато да је структура камена из Магнезије попут предмета начињених од гвожђа, а привлачно својство тумачили су постојањем извесног флуида који потиче из магнета. С обзиром да је експериментално истраживање у физици заживело тек при крају епохе ренесансе, тумачење магнетизма је протицало споро. Упечатљив пример за тако нешто представља вишевековно погрешно уверења да бели лук може извршити размагнетисавање игле компаса. Због тога је члановима посаде који су руковали том направом било забрањено да једу ову намирницу! Половином XIII века, војни инжењер Пјер д Марикур вршећи експерименте открива да магнет поседује два пола, при чему се полови појављују иако се магнет преполови, а магнетна игла компаса је усмерена у правцу „небеских полова”. Он појаву приписује утицају неба, а не присуству Земљиног магнетног поља. Покушао је и да направи вечити покретач тако ш

Референтни систем

Анимација приказује слободан пад лопте на броду који се креће. О тој појави је размишљао изопштени свештеник Ђордано Бруно. Наслутио је да путања лопте неће бити иста у односу на посматраче на броду и копну. Истакнути историчар развоја физике Милорад Млађеновић цитира један Брунов запис: „Замислимо два човека, једног на броду у покрету, а другог изван њега. Нека обојица имају руку у истој тачки ваздуха и нека са тог истог места истовремено сваки испусти по један камен. Камен првог, не скрећући са (вертикалне) линије пашће на одређено место, док ће камен другога бити померен уназад.”  Ако се појава посматра у односу на обалу мора као референтни систем, путања поприма изглед хоризонталног хица. Опажајући исту појаву на броду, а то је приказано у другом делу анимације, путања је попут слободног пада. Разлика је присутна, јер се камера у другом делу анимације креће заједно са бродом те поседује брзину својствену броду, док је у првом делу анимације била непокретна у односу на брод

Конструкција ликова код сочива

Симулација се односи на преламање светлости код танких сочива - објеката већег индекса преламања у односу на ваздух. Запазимо да је у горњем десном квадранту пружена могућност избора: расипно или сабирно сочиво. geogebra.org/m/mqUQvccR Запажамо присуство две жиже F , јер предмет може да се постави са обе стране сочива. Попут огледала , жижна даљина f представља растојање од жиже до центра сочива. Дата су два карактеристична зрака. Сабирна сочива дају умањен, изврнут и реалан лик ако је предмет удаљен више од две жижне даљине у односу на сочиво. Ако је предмет удаљен више од једне жижне даљине, а мање од две жижне даљине у односу на сочиво, лик је увећан, изврнут и реалан. Ако је предмет испред жиже, лик је увећан, имагинаран и усправан. Расипна сочива увек стварају умањене, усправне и имагинарне ликове.