Пређи на главни садржај

Феромагнетици, парамагнетици и дијамагнетици

Упрошћена слика електрона у атому приказује ову честицу на начин да се обрће дуж орбитале, око језгра брзином сталне бројне вредности, али и око своје осе (спин). С обзиром да је електрон наелектрисан, током кретања ствара два магнетна поља: једно настаје због кретања око језгра, а друго због обртања око своје осе. Та два магнетна поља одређују магнетни (диполни) моменти - орбитални и спински.
Ова величина је својствена и честицама у атомском језгру, али је њихов допринос укупном магнетном моменту атома знатно мањи те није битан за тумачење магнетних особина материјала. Стрелицама су приказани укупни магнетни моменти атома - као збир магнетних момената електрона.


Код материјала који припадају групи дијамагнетика, атоми не поседују магнетни момент (или је веома слаб) када материјал није изложен дејству магнетног поља. Међутим, у магнетном пољу, као што запис приказује, атоми дијамагнетика стичу магнетне моменте који су усмерени на начин да слабе магнетно поље. Типични представници су вода, бакар или сребро.

Други део тиче се парамагнетизма, појаве која је присутна у материјалима чији атоми поседују магнетне моменте без обзира на присуство спољашњег магнетног поља. Уочавамо да су магнетни моменти атома распоређени хаотично све док не потпадну под утицај поља. С обзиром на оријентацију магнетних момената у присуству поља, у парамагнетицима је спољашње магнетно поље појачано. Усмерена оријентација је присутна све док је парамагнетник под дејством магнетног поља, а након искључења поља магнетни моменти су поново оријентисани насумично. Алуминијум је пример за ову врсту магнетика.

Свега неколико елемената, попут гвожђа и никла, испољавају својство сталног магнетизма - то су феромагнетици. Али зато постоји много њихових легура које дају јача магнетна поља у односу на „чисте” материјале. Видео запис приказује да су магнетни моменти једнако оријентисани једино унутар малих запремина које сачињавају материјал, а те запримине носе назив домени. Ако се сагледа цео материјал, домени пружају различите оријентације магнетних момената атома те материјал не испољава магнетна својства (или то слабо чини). Након излагању спољашњем магнетном пољу, магнетни моменти атома се усмеравају у правцу поља. Престанком дејства поља материјал остаје намагнетисан. Очигледно је да тих неколико елемената поседују нешто што их издваја од парамагнетика: присутно је специфично спрезање спинова електрона атома, а то утиче на оријентацију унутар појединачних домена.

Поступак кувања на шпоретима познатим као индукционе плоче заснива се на употреби посуђа начињених од феромагнетног материјала.

Популарни чланци

Дилатација времена

Следи видео приказ Ајнштајновог мисаоног експеримента. Светлосни сигнал простире се као плафону возила, где је постављено огледало. Први догађај је слање сигнала, а други догађај је пријем сигнала након што се одбио од огледала. Посматрач изван возила уочава два догађаја на други начин: путања сигнала ће у односу на њега бити једнакокраки троугао:

Да ли су два временска интервала једнака? Искуство нам даје потврдан одговор, али разлика ће бити присутна ако се возило креће релативистичком брзином. Може се доказати да ће временски интервал у односу на путника бити краћи - проистиче да часовник покретног посматрача спорије откуцава време.  Било би погрешно прихвати чињеницу да ће покретни часовник увек спорије откуцавати време. То не мора да буде тако. Временски интервал између два догађаја је најкраћи за оног посматрача у односу на кога се оба догађаја дешавају на истом месту. У близи масивног тела време спорије протиче. Ако галаксију схватимо као компактну масу и ту слику проширимо на …

Референтни систем

Анимација приказује слободан пад лопте на броду који се креће. О тој појави је размишљао изопштени свештеник Ђордано Бруно. Наслутио је да путања лопте неће бити иста у односу на посматраче на броду и копну. Истакнути историчар развоја физике Милорад Млађеновић цитира један Брунов запис: „Замислимо два човека, једног на броду у покрету, а другог изван њега. Нека обојица имају руку у истој тачки ваздуха и нека са тог истог места истовремено сваки испусти по један камен. Камен првог, не скрећући са (вертикалне) линије пашће на одређено место, док ће камен другога бити померен уназад.” 
Ако се појава посматра у односу на обалу мора као референтни систем, путања поприма изглед хоризонталног хица. Опажајући исту појаву на броду, а то је приказано у другом делу анимације, путања је попут слободног пада. Разлика је присутна, јер се камера у другом делу анимације креће заједно са бродом те поседује брзину својствену броду, док је у првом делу анимације била непокретна у односу на брод:

Електрична струја у води и ваздуху

Ако стојим до колена у води, да ли ће струја прво стићи до мене кроз ваздух или воду? Први део одговора односи се на чињеницу да је ваздух одличан изолатор према протицању електричне струје. Проводљивост воде је условљена присуством примеса. Слана вода поседује добру проводљивост, питка вода је знатно слабији проводник док је дестилована вода лош проводник, али ипак поседује нижу специфичну отпорност од ваздуха. Према томе, под нормалним условима, електрична струја не би могла да се простире кроз ваздух па је вода једина средина погодна за проток електричне струје.

Други део одговора односи се на то када услови нису уобичајени. Ту мислим на појаву муње. Да би се испољила, неопходно је да се између доњег дела облака и површине тла формира јако електрично поље тако да непроводни ваздух буде у стању плазме. То значи да су присутни молекули ваздуха у великој мери јонизовани под утицајем електричног поља. Поменуто поље врши убрзавање наелектрисања ка електричним потенцијалима супротног зна…

Дифракција таласа

Франческо Грималди је био језуитски свештеник и професор на Унивезитету у Болоњи. У XVII веку изводи експерименте са светлошћу која пролази кроз отвор на капку прозора. Затим је у правцу простирања зрака поставио непровидни објекат и вршио осматрање сенке. Уочио је већу ширину од очекиване, као и присуство боја на крајевима сенке. Грималди је закључио да је приказ последица тога што се светлост не простире праволинијски и појави даје назив дифракција. Наставак истраживања ове појаве од стране других научника је била испуњена недоумицама о природи светлости. Полазећи од Хајгенсовог тумачења простирања таласа, инжењер Огистен Френел и лекар Томас Јанг су пружили потпуно тумачење појаве дифракције. Дифракција је присутна код механичкихи електромагнетних таласа. Запис је направљен у контексту поглавља прве врсте поменутих таласа. Оба дела записа приказују дифракцију таласа када су отвори различитих величина и зато је величина савијања таласног фронта различита. Поменути таласни фронтови …