Пређи на главни садржај

Експеримент Мајкелсона и Морлија

У XIX веку постојало је уверење да електромагнетне таласе преноси етар. Међутим, етар није опажен, али то није било препрека да се фама о постојању одржи дуго. Етар је поседовао крајње необичне особине и током времена својства су проширена, у складу са потребама физике. 
Крајем XIX века коначно се кренуло у подухват тражења доказа о постојању етра и његовом кретању (или мировању). Међу физичарима је владало уверење да је ова наука углавном открила све тајне природе, а остало је још пар ситница да се заокружи ова грандиозна творевина. Једна од тих ситница био је етар. Нико није сумњао да постоји.
Алберт Мајклсон се као дете преселио из Немачке у САД. Породица се настанила у рударској колонији, у Калифорнији, а његов отац је трговао бакалуком. Упркос сиромаштву успео је да стекне стипендију и упише Поморску академију. Десетак година касније постаје професор физике на једном универзитету и интересује се за проблем доказивања постојања етра. Успео је да убеди хемичара Едварда Морлија да му се придружи, а Александра Бела да финансира цео експеримент. Следи анимирани приказ експеримента.
Монохроматска светлост путује од извора до полупропусног огледала (постављеног укосо). Коси положај је неопходан да би се сноп светлости раздвојио на једнаке деле. Зраци потом путују ка непропусним огледалима. Видео запис приказује очекиване путање сигнала у односу на два референтна система - на начин који проистиче из класичне механике:


Присутна разлика би морала да доводе до појаве промене у интерференционој слици светлости. Међутим, то се није догодило упркос многобројним извођењима експеримента.
Било је покушаја да се спаси хипотеза о постојању етра. Једна од њих је тврдила да Земља увлачи етар у току кретања. Друга хипотеза је посебно интересантна и осмислили су је, независно један од другог, холандски физичар Лоренц и ирски „филозоф природе” Фицџералд. Они су сматрали да се дужине скраћују (контрахују) у правцу кретања Земље.

Ако се интерференција појављује у односу на етар, ко је требао да је региструје? 
Тумачење тока експеримента је упрошћено. Њих двојица су након једног мерења обртали целу апаратуру за 90⁰ и изнова вршили мерење. То су чинили да би уочили малу разлику у положајима интерференционих максимума. Експеримент су изводили током целе године, при различитим положајима Земље. 
Резултат њиховог експеримента је требао да буде исти у односу на било који инерцијални референтни систем. Земља током кратког времена, односно док траје једно мерење, представља инерцијални референтни систем. Дакле, и Земља и етар су инерцијални референтни системи, тако да се кретање Земље у односу на непокретни етар може заменити кретањем етра у односу на непокретну Земљу. Поређења ради, ако експеримент изводимо на броду који се креће сталном брзином и на мерење утиче ваздух, то би било исто као да мерење обављамо на броду који се не креће али тако да ветар дува брзином којом се кретао брод.
Неколико хипотеза је настало са циљем тумачења неочекиваног резултата. Из једне је проистицало да Земља увлачи етар током кретања, што значи да не постоји релативно кретање Земље и етра. Једна друга хипотеза, Лоренцова, је послужила Ајнштајну да одбаци идеју о постојању етра.

Коментари

Популарни чланци

Електрична струја у води и ваздуху

Ако стојим до колена у води, да ли ће струја прво стићи до мене кроз ваздух или воду? Први део одговора односи се на чињеницу да је ваздух одличан изолатор према протицању електричне струје. Проводљивост воде је условљена присуством примеса. Слана вода поседује добру проводљивост, питка вода је знатно слабији проводник док је дестилована вода лош проводник, али ипак поседује нижу специфичну отпорност од ваздуха. Према томе, под нормалним условима, електрична струја не би могла да се простире кроз ваздух па је вода једина средина погодна за проток електричне струје.

Други део одговора односи се на то када услови нису уобичајени. Ту мислим на појаву муње. Да би се испољила, неопходно је да се између доњег дела облака и површине тла формира јако електрично поље тако да непроводни ваздух буде у стању плазме. То значи да су присутни молекули ваздуха у великој мери јонизовани под утицајем електричног поља. Поменуто поље врши убрзавање наелектрисања ка електричним потенцијалима супротног зна…

Линеарни хармонијски осцилатор

Видео запис приказује кружне осцилације куглице и линеарне хармонијске осцилације њене сенке. Циљ је да се повуче паралела између те две врсте осцилација:


Приказ осциловања објекта закаченог за опругу треба да пружи увид у то због чега се се осцилаторна кретања описују хармонијским функцијама.

У првом делу је дат приказ хармонијског осцилатора који мирује. Међутим, ако кретање анализирамо у односу на други референтни систем, тако да је осцилатор у покрету, уочавамо путању која изгледа попут хармонијске функције. На сајту Геогебре је дат приказ симулације простог осцилатора и графика положаја, брзине и убрзања.



Референтни систем

Анимација приказује слободан пад лопте на броду који се креће. О тој појави је размишљао изопштени свештеник Ђордано Бруно. Наслутио је да путања лопте неће бити иста у односу на посматраче на броду и копну. Истакнути историчар развоја физике Милорад Млађеновић цитира један Брунов запис: „Замислимо два човека, једног на броду у покрету, а другог изван њега. Нека обојица имају руку у истој тачки ваздуха и нека са тог истог места истовремено сваки испусти по један камен. Камен првог, не скрећући са (вертикалне) линије пашће на одређено место, док ће камен другога бити померен уназад.” 
Ако се појава посматра у односу на обалу мора као референтни систем, путања поприма изглед хоризонталног хица. Опажајући исту појаву на броду, а то је приказано у другом делу анимације, путања је попут слободног пада. Разлика је присутна, јер се камера у другом делу анимације креће заједно са бродом те поседује брзину својствену броду, док је у првом делу анимације била непокретна у односу на брод:

Феромагнетици, парамагнетици и дијамагнетици

Упрошћена слика електрона у атому приказује ову честицу на начин да се обрће дуж орбитале, око језгра брзином сталне бројне вредности, али и око своје осе (спин). С обзиром да је електрон наелектрисан, током кретања ствара два магнетна поља: једно настаје због кретања око језгра, а друго због обртања око своје осе. Та два магнетна поља одређују магнетни (диполни) моменти- орбитални и спински. Ова величина је својствена и честицама у атомском језгру, али је њихов допринос укупном магнетном моменту атома знатно мањи те није битан за тумачење магнетних особина материјала. Стрелицама су приказани укупни магнетни моменти атома - као збир магнетних момената електрона.


Код материјала који припадају групи дијамагнетика, атоми не поседују магнетни момент (или је веома слаб) када материјал није изложен дејству магнетног поља. Међутим, у магнетном пољу, као што запис приказује, атоми дијамагнетика стичу магнетне моменте који су усмерени на начин да слабе магнетно поље. Типични представници су в…