Пређи на главни садржај

Примена физике

Код нас још увек није у потпуности сазрело схватање о значају базичних наука за технолошки напредак - који се тиче и развоја друштва. Зато наводим неколико примера примене физике у другим наукама и свакодневним ситуацијама. Теме су одабране у складу са личном проценом о значају.

Физика и информатика

У последње време често се помиње важност информатичког образовања. У основи хардвера савремених уређаја су полупроводнички матетријали, а прво тумачење њихових својстава - Зонска теорија кристала - потиче од физичара Феликса Блоха. С друге стране, срце сваког хардвера представљају полупроводнички сендвич слојеви, транзистори, осмишљени од стране Вилијама Шоклија и његових сарадника.
Али, до тих открића је било могуће допрети тек након успостављања квантне физике, утемељене од стране познатих физичари: Макса Планка, Алберта Ајнштајна, Ервина Шредингера, Вернера Хајзенберга, Луја де Броља и других. 

Физика и медицина

Осим физичара, ретки су они који се могу похвалити да знају за постојање антиматерије. Ако и знају, није искључено да мисле како је реч о нечему у домену фантастике. Међутим, PET скенери пружају могућност да лекар сагледа унутрашњост организма користећи појаву дејстава античестица и ❠нормалних❞ честица. Физичар Пол Дирак је први претпоставио постојање антиматерије. 
Он је, међутим, дао и известан допринос успостављању медицинске дијагностике путем магнетне резонанце, мада то није доживео: открићем својства електрона познатог под називом спин. Пола века пре тог догађаја, Хајнрих Херц даје потврду о постојању електромагнетних таласа. Тако се у наше доба, кроз познати медицински уређај, преплићу два открића из прошлости. 

Употреба енергије


У основи појаве добијања наизменичне струје је откриће самоуког истраживача Мајкла Фарадеја: електромагнена индукција. Али, његово откриће је и трасирало пут ка стварању електромотора, уређаја које срећемо у фрижидерима, феновима, усисивачима и блендерима.
Употреба соларне енергије има зачетак у открићу дејстава електромагнетног зрачења и метала, фотоефекта, док је Алберт Ајнштајн први протумачио ову појаву. 

Популарни чланци

Електромагнетне осцилације

Најједноставнији приказ електромагнетних осцилација представља веза калема и кондензатора у струјном колу. Такво коло је присутно у многим електронским уређајима које употребљавамо.  Кондензатор је приказан у облику ваљка и у почетку је био напуњен. Позитиван знак је у складу са позицијом позитивне облоге кондензатора, а приказује и смер струје у колу. У калему настаје магнетно поље, али се постепено формира због присуства индуктивног електричног отпора. Након што се кондензатор испразни, струја самоиндукције пуни кондензатор - у складу са Ленцовим законом.



Франк-Херцов експеримент

Франк-Херцов експеримент је пружио потврду у вези става Нилса Бора о квантнованости енергетских нивоа електрона у атому. Експеримент је остварен почетком XX века, на начин да је извршено сударање електрона, убрзаних електричним пољем, са атомима. С обзиром да се успоравање електрона догађало једино при одређеним вредностима кинетичких енергија електрона, појава представља пример резонантног процеса.
Симулација експеримента Анимација представља шематски приказ Франк-Херцовог експеримента. Извор електрона, катода, приказана је цилиндром црвене боје, мрежица кроз коју су пролазили електрони је у средишњем делу, а анода је с десне стране. Запазимо да је мрежица на вишем електричном потенцијалу у односу на катоду и аноду. Промена напона између катоде и мрежице може се уочити у доњем левом углу, док се регистрована струја електрона мери амперметром. Атоми живе нису приказани због прегледности записа. Електрони стичу кинетичке енергије од електричног поља и у првом делу анимације је присутно…

Радерфордов модел атома

Ернест Радерфорд је говорио да је каријеру физичара започео када је одлучио да се мане копања кромпира. У улози професора често би се спетљао приликом извођења једначина и студентима је препуштао да доврше започето. Осим физике обожавао је још голф и аутомобиле.  Радерфорд је осмислио први озбиљан модел атома, који је био динамички, полазећи од експеримента са проласком алфа зрачења (језгра атома хелијума) кроз танак листић злата. Злато је користио због велике густине. Сумњао је у исправност Томсоновог статичког модела атома, у складу с којим је атом већим делом сачињен од позитивног наелектрисања, а негативно наелектрисане честице су усађене унутар атома - попут шљива у пудингу, и сматрао је да позитивно наелектрисање у атому заузима много мању запремину. Видео запис
Анимација приказује да је већина позитивно наелектрисаних алфа честица прошла кроз листић злата, са или без скретања, а мали број се одбио под великим углом након директног судара честица са језгром. Дакле, атом је у већем…