Пређи на главни садржај

Фотон

Да ли фотон има масу? Како је могуће да гравитационо поље делује на фотон ако нема масу?
С обзиром да фотон нема масу, гравитационо поље утиче на његову енергију. Први начин да се ова појава протумачи је чињеница проистекла из Ајнштајнове опште теорије релативности: часовници спорије откуцавају време у јачим гравитационим пољима у односу на слабија поља. Ову појаву је најједноставније разумети помоћу следећег мисаоног експеримента. Нека се два часовника налазе на диску који ротира у водоравној равни, тако да је један у центру а други на периферији.
Фотон и гравитација
На часовник у центру диска не делује инерцијална сила, док на часовник смештен на ободу делује. Полазећи од појаве дилатације времена, часовник на периферији диска спорије откуцава време у односу на часовник у центру. С друге стране, дејство инерцијалне силе је попут дејства гравитационе силе. Према томе, сви процеси ће се дешавати успорено у присуству гравитационог поља у односу на ситуацију када није присутно, а то се односи и на учесталост промене електричног и магнетног поља фотона. Зато је његова учесталост померена ка нижим вредностима у односу на вредности када поље не би постојало и та појава се назива гравитациони црвени помак.
Други начин да то разумемо је поређење енергије фотона у гравитационом пољу планете или звезде и изван поља. На површини небеског тела енергија фотона је умањена за потенцијалну енергију гравитационог поља, у односу на енергију изван тог поља. То се односи и на учесталост ове честице, с обзиром да су енергија и учесталост сразмерни.

Да ли сте чули за Черенковљево зрачење? Честице се ту крећу брже од светлости?
У вакууму објекти не могу да се крећу брже од светлости, али у материјалној средини могу. Светлост се спорије креће кроз средину која није вакуум, тако да та појава не нарушава постулате посебне теорије релативности. Черенковљево зрачење настаје када се електрони простиру кроз материјалну средину и ступају у дејство са атомима те средине, при чему настају фотони који се крећу спорије од електрона.

Популарни чланци

Електромагнетне осцилације

Најједноставнији приказ електромагнетних осцилација представља веза калема и кондензатора у струјном колу. Такво коло је присутно у многим електронским уређајима које употребљавамо.  Кондензатор је приказан у облику ваљка и у почетку је био напуњен. Позитиван знак је у складу са позицијом позитивне облоге кондензатора, а приказује и смер струје у колу. У калему настаје магнетно поље, али се постепено формира због присуства индуктивног електричног отпора. Након што се кондензатор испразни, струја самоиндукције пуни кондензатор - у складу са Ленцовим законом.



Франк-Херцов експеримент

Франк-Херцов експеримент је пружио потврду у вези става Нилса Бора о квантнованости енергетских нивоа електрона у атому. Експеримент је остварен почетком XX века, на начин да је извршено сударање електрона, убрзаних електричним пољем, са атомима. С обзиром да се успоравање електрона догађало једино при одређеним вредностима кинетичких енергија електрона, појава представља пример резонантног процеса.
Симулација експеримента Анимација представља шематски приказ Франк-Херцовог експеримента. Извор електрона, катода, приказана је цилиндром црвене боје, мрежица кроз коју су пролазили електрони је у средишњем делу, а анода је с десне стране. Запазимо да је мрежица на вишем електричном потенцијалу у односу на катоду и аноду. Промена напона између катоде и мрежице може се уочити у доњем левом углу, док се регистрована струја електрона мери амперметром. Атоми живе нису приказани због прегледности записа. Електрони стичу кинетичке енергије од електричног поља и у првом делу анимације је присутно…

Радерфордов модел атома

Ернест Радерфорд је говорио да је каријеру физичара започео када је одлучио да се мане копања кромпира. У улози професора често би се спетљао приликом извођења једначина и студентима је препуштао да доврше започето. Осим физике обожавао је још голф и аутомобиле.  Радерфорд је осмислио први озбиљан модел атома, који је био динамички, полазећи од експеримента са проласком алфа зрачења (језгра атома хелијума) кроз танак листић злата. Злато је користио због велике густине. Сумњао је у исправност Томсоновог статичког модела атома, у складу с којим је атом већим делом сачињен од позитивног наелектрисања, а негативно наелектрисане честице су усађене унутар атома - попут шљива у пудингу, и сматрао је да позитивно наелектрисање у атому заузима много мању запремину. Видео запис
Анимација приказује да је већина позитивно наелектрисаних алфа честица прошла кроз листић злата, са или без скретања, а мали број се одбио под великим углом након директног судара честица са језгром. Дакле, атом је у већем…