Пређи на главни садржај

Диференцијални рачун у физици

Поштовани професоре, предавали сте ми физику у другој години (током ...) на ... смеру у ... гимназији. Ове године сам уписао ЕТФ, одсек за Софтверско инжењерство. Нисам нашао ниједан други начин да Вас контактирам изузев путем Google+ сервиса. Један од предмета у првом семестру ми је физика, па бих хтео да вас питам нешто што ми није потпуно јасно, а сматрам да ми Ви можете најбоље рећи. У гимназији нисмо никада користили изводе у физици, а они се појављују у првој области коју смо радили, кинематици, као v=ds/dt. То ми није потпуно јасно, знам да се односи на то да је први извод пута у датој тачки представља вектор тренутне брзине али ми није јасно да ли то има рачунску примену или се искључиво односи на приказ вектора брзине. Ако је у питању вектор брзине онда би требало имати једначину путање тачке па тако и наћи први извод који би представљао вектор тренутне брзине. Иако ми је ово јасно отприлике што се тиче брзине или убрзања, није ми јасно зашто се исто односи и на тренутну јачину струје i=dq/dt (ово смо радили из основа електронике). Да ли извод нема никакву рачунску примену, односно само дефинициону, тј. само дефинише шта је тренутна струја?
На питање ћу одговорити конкретним примером. Путање објеката могу да буду представљене функцијама, попут параболе, као код косог хица. Али, узмимо нешто једноставније: нека се објекат креће дуж икс осе тако да се промена положаја може представити једначином:
при чему су a и b константе. Ако постоји потреба да се одреди брзина, на пример у трећој секунди, онда морамо да диференцирамо функцију:
Ако нам је позната вредност константе a, у могућности смо да добијамо тражену брзину.
Исто се односи и на једначину која се тиче тренутне вредности јачине струје. Ако је познато на који начин се мења јачина електричне струје у проводнику (или, на пример, кондензатору) можемо одредити количину наелектрисања која протекне кроз проводник и напуни кондензатор.

Популарни чланци

Електромагнетне осцилације

Најједноставнији приказ електромагнетних осцилација представља веза калема и кондензатора у струјном колу. Такво коло је присутно у многим електронским уређајима које употребљавамо.  Кондензатор је приказан у облику ваљка и у почетку је био напуњен. Позитиван знак је у складу са позицијом позитивне облоге кондензатора, а приказује и смер струје у колу. У калему настаје магнетно поље, али се постепено формира због присуства индуктивног електричног отпора. Након што се кондензатор испразни, струја самоиндукције пуни кондензатор - у складу са Ленцовим законом.



Франк-Херцов експеримент

Франк-Херцов експеримент је пружио потврду у вези става Нилса Бора о квантнованости енергетских нивоа електрона у атому. Експеримент је остварен почетком XX века, на начин да је извршено сударање електрона, убрзаних електричним пољем, са атомима. С обзиром да се успоравање електрона догађало једино при одређеним вредностима кинетичких енергија електрона, појава представља пример резонантног процеса.
Симулација експеримента Анимација представља шематски приказ Франк-Херцовог експеримента. Извор електрона, катода, приказана је цилиндром црвене боје, мрежица кроз коју су пролазили електрони је у средишњем делу, а анода је с десне стране. Запазимо да је мрежица на вишем електричном потенцијалу у односу на катоду и аноду. Промена напона између катоде и мрежице може се уочити у доњем левом углу, док се регистрована струја електрона мери амперметром. Атоми живе нису приказани због прегледности записа. Електрони стичу кинетичке енергије од електричног поља и у првом делу анимације је присутно…

Радерфордов модел атома

Ернест Радерфорд је говорио да је каријеру физичара започео када је одлучио да се мане копања кромпира. У улози професора често би се спетљао приликом извођења једначина и студентима је препуштао да доврше започето. Осим физике обожавао је још голф и аутомобиле.  Радерфорд је осмислио први озбиљан модел атома, који је био динамички, полазећи од експеримента са проласком алфа зрачења (језгра атома хелијума) кроз танак листић злата. Злато је користио због велике густине. Сумњао је у исправност Томсоновог статичког модела атома, у складу с којим је атом већим делом сачињен од позитивног наелектрисања, а негативно наелектрисане честице су усађене унутар атома - попут шљива у пудингу, и сматрао је да позитивно наелектрисање у атому заузима много мању запремину. Видео запис
Анимација приказује да је већина позитивно наелектрисаних алфа честица прошла кроз листић злата, са или без скретања, а мали број се одбио под великим углом након директног судара честица са језгром. Дакле, атом је у већем…