Пређи на главни садржај

Карноов циклус

На почетку индустријске револуције постојала је потреба да се унапреди рад парне машине и ефикасност. Сади Карно, физичар и официр у француској војсци, размишљао је о томе који гас/пару је потребно употребити и на какав начин да би се остварио највећи степен искоришћења. Из тог делања је проистекао други закон термодинамике, мада установљен од стране других физичара. Треба запазити да је Карно све време писао о калорику као радној супстанци парне машине - флуиду који садржи топлотну енергију и струји између објеката на различитој температури. Није први пут да се у физици стиже до нових открића помоћу погрешних претпоставки. Графички приказ машине, такозвани Карноов циклус, је уведен у физику много година касније.

Видео запис

Приказ представља Карноову топлотну машину, на начин како је он замислио рад уређаја са највећим степеном искоришћења калорика:


Централни део анимације сачињава цилиндар са радним телом. Карно није прецизно назначио о каквом флуиду се ради. Са леве стране је грејач, извор топлотне енергије одакле истиче калорик, а са десне стране хладњак - место где утиче неискоришћени калорик. 
Карно је схватио да је хладњак неопходан да би мотор могао да обави један циклус, а затим да то понови много пута. Чињеница о неопходности присуства хладњака ће утицати на потоњу формулацију термодинамичких закона и апсолутне температуре. Цилиндар садржи и клип који је преко осовине (шипка црне-беле боје) повезана за објектом који обавља рад.
Потребно је уочити да грејач емитује топлотну енергију радном телу у току 1/4 једног циклуса и то је изотермско ширење, а хладњак апсорбује топлоту у току изотермског сабијања, што је то приказано у складу са графичким приказом циклуса. У току адијабатског ширења и сабијања апсорбовање и емитовање топлоте није присутно.

Популарни чланци

Гасни термометар

Гасни термометар сачињава балон испуњен гасом и отворена цев у којој се налази жива. Ова направа може да пружи прецизније резултате мерења температуре у односу на термометре који садрже течни флуид.  Поступак мерења се састоји у томе да се инструмент прво калибрише, односно измере се притисци за познате вредности температура при којима се дешавају промене агрегатних стања неке супстанце. Затим се приступа цртању графика P(T) који ће послужити у поступку одређивања непознате температуре гаса. Симулација
Анимација приказује изглед апаратуре, на начин да је прилагођена ученицима у гимназији. Исто тако је приказано кретање молекула у балону, док загревање балона и померање живиног стуба није предмет овог записа.  Када се балон загреје, гас испољава ширење и тежи да потисне живин стуб. Да би запремина гаса остала стална врши се померање десног крака живиног стуба, тако да се ниво живе у левом краку не мења. Дакле, притисак гаса се увећава. Притисак гаса у балону P, атмосферски притисак Pa…

Ерстедов експеримент

Хеленски мислиоци уочили су да материјали који испољавају магнетна својствапривлаче предмете начињене од гвожђа. Било им је познато да је структура камена из Магнезије попут предмета начињених од гвожђа, а привлачно својство тумачили су постојањем извесног флуида који потиче из магнета. С обзиром да је експериментално истраживање у физици заживело тек при крају епохе ренесансе, тумачење магнетизма је протицало споро. Упечатљив пример за тако нешто представља вишевековно погрешно уверења да бели лук може извршити размагнетисавање игле компаса. Због тога је члановима посаде који су руковали том направом било забрањено да једу ову намирницу! Половином XIII века, војни инжењер Пјер д Марикур вршећи експерименте открива да магнет поседује два пола, при чему се полови појављују иако се магнет преполови, а магнетна игла компаса је усмерена у правцу „небеских полова”. Он појаву приписује утицају неба, а не присуству Земљиног магнетног поља. Покушао је и да направи вечити покретач тако што је…

Максвелова расподела брзина молекула

Полазећи од истраживања Рудолфа Клаузијуса, шкотски физичар Џејмс Максвел разрађује кинетичку теорију гасова математичким путем и долази до открића функционалног облика расподеле брзина молекула гасова. Молекули гасова се крећу брзинама различитих бројних вредности. Те вредности су прилично високе. На пример, на температуриод 200 C молекули ваздуха крећу се брзином у просеку око 1500 km/h. То је дупло више у односу на брзине путничких авиона. Садржај анимације Основу анимације чини балон испуњен топлим ваздухом: youtu.be/mwbk_dZMEQg
Први део односи се на расподелу брзина када ваздух није изложен пламену. На ординатној оси није прецизно наведена величина, јер је анимација намењена гимназијској популацији младих људи који похађају други разред и нису у могућности да детаљно упознају расподелу брзина молекула. Димензије молекула нису сразмерне стварној величини из разлога боље прегледности анимације. Оно што није приказано је другачији облик криве за различите гасове.  Други део приказа …