Пређи на главни садржај

Гајгеров бројач

Бројачи (детектори) региструју радиоактивно зрачење услед присуства јонизације или побуђивања (ексцитације) електрона у атомима који сачињавају „пуњење” бројача, а од стране радиоактивног зрачења. Ако се догоди јонизација, електрони и јони се премештају ка електродама детектора и на тај начин се добија струјни импулс који се појачава. Тај сигнал представља знак да је честица „упецана”. Велики број бројача поседује могућност да измери енергију регистрованих честица. Гајгеров бројач то не може, али ипак има неке предности услед којих се и даље употребљава. Добре стране су што је јефтин и осетљив на радиоактивно зрачење. Довољно је да се створи само један јонски пар у бројачу да би се радиоактивно зрачење регистровало.
Бројачку цев сачињава метални ваљак који представља катоду и танка метална жица (у анимацији је представљена црном бојом) која се простире дуж осе бројачке цеви – анода. Између катоде и аноде је електрично поље.


Куглице плаве боје представљају смешу гасова: од 80 % до 95 % племенит гас, а преостали део сачињава алкохолна пара или неки халогени гас. Када у бројачкој цеви нису присутне стране честице нема ни јонских парова, па ни струје коју би регистровала бројачка електроника, јер је смеша гасова изолатор.
Куглица црвене боје представља страну честицу - електрон који се „упецао” и створио један или више јонских парова - електрон (црвена куглица) и позитиван јон (зелена куглица). Електрично поље раздваја електроне од позитивних јона. Електрони путују ка позитивној електроди, аноди, а позитивни јони ка катоди. Електрони стичу кинетичку енергију од електричног поља да врше секундарне јонизације гаса, а на тај начин ствара се лавина електрона која се креће ка аноди. Исто тако ствара се и лавина позитивних јона, али они не могу да изврше секундарне јонизације из разлога што су масивнији па не могу да стекну потребну кинетичку енергију за тако нешто. Лавина електрона у једном тренутку почиње да слаби, јер електрони и позитивни јони заклањају спољашње електрично поље. Присутне рекомбинације електрона и позитивних јона нисам приказао.

Популарни чланци

Електромагнетне осцилације

Најједноставнији приказ електромагнетних осцилација представља веза калема и кондензатора у струјном колу. Такво коло је присутно у многим електронским уређајима које употребљавамо.  Кондензатор је приказан у облику ваљка и у почетку је био напуњен. Позитиван знак је у складу са позицијом позитивне облоге кондензатора, а приказује и смер струје у колу. У калему настаје магнетно поље, али се постепено формира због присуства индуктивног електричног отпора. Након што се кондензатор испразни, струја самоиндукције пуни кондензатор - у складу са Ленцовим законом.



Франк-Херцов експеримент

Франк-Херцов експеримент је пружио потврду у вези става Нилса Бора о квантнованости енергетских нивоа електрона у атому. Експеримент је остварен почетком XX века, на начин да је извршено сударање електрона, убрзаних електричним пољем, са атомима. С обзиром да се успоравање електрона догађало једино при одређеним вредностима кинетичких енергија електрона, појава представља пример резонантног процеса.
Симулација експеримента Анимација представља шематски приказ Франк-Херцовог експеримента. Извор електрона, катода, приказана је цилиндром црвене боје, мрежица кроз коју су пролазили електрони је у средишњем делу, а анода је с десне стране. Запазимо да је мрежица на вишем електричном потенцијалу у односу на катоду и аноду. Промена напона између катоде и мрежице може се уочити у доњем левом углу, док се регистрована струја електрона мери амперметром. Атоми живе нису приказани због прегледности записа. Електрони стичу кинетичке енергије од електричног поља и у првом делу анимације је присутно…

Радерфордов модел атома

Ернест Радерфорд је говорио да је каријеру физичара започео када је одлучио да се мане копања кромпира. У улози професора често би се спетљао приликом извођења једначина и студентима је препуштао да доврше започето. Осим физике обожавао је још голф и аутомобиле.  Радерфорд је осмислио први озбиљан модел атома, који је био динамички, полазећи од експеримента са проласком алфа зрачења (језгра атома хелијума) кроз танак листић злата. Злато је користио због велике густине. Сумњао је у исправност Томсоновог статичког модела атома, у складу с којим је атом већим делом сачињен од позитивног наелектрисања, а негативно наелектрисане честице су усађене унутар атома - попут шљива у пудингу, и сматрао је да позитивно наелектрисање у атому заузима много мању запремину. Видео запис
Анимација приказује да је већина позитивно наелектрисаних алфа честица прошла кроз листић злата, са или без скретања, а мали број се одбио под великим углом након директног судара честица са језгром. Дакле, атом је у већем…