Пређи на главни садржај

Циклотрон

Ернест Лоренс, амерички физичар и један од челних људи пројекта „Менхетн” који ће од САД начинити суперсилу, је крајем двадесетих година прошлог века размишљао о стварању уређаја за убрзавање честица - акцелератора - тако да буде економичан и по величини и по цени. Његов проналазак је унапредио истраживања у физици честица и донео Нобелову награду.

Видео запис

Уређај сачињавају два магнета између којих су положени дуанти, компоненте начињене од метала у облику латиничног слова D. Оно што у анимацији није приказано је да су дуанти везани за извор електричног поља различитог поларитета:


У процепу између дуаната је присутно електрично поље путем чега честица стиче кинетичку енергију. Након што честица напусти процеп и уђе у дуант дејство електричног поља престаје, али на честицу делује магнетно поље које једино утиче на правац вектора брзине. Након што протекне половина периода кретања дуж криволинијске путање, честица поново долази испред процепа, али је електрично поље променило поларитет тако да се брзина честице изнова увећава у процепу. Током друге половина периода, честица је у другом дуанту и на њу поново делује магнетно поље.
С обзиром да је полупречник путање честице у сразмери са њеном брзином:
r ~ υ
удаљеност честице у односу на средиште циклотрона се увећава током сваког проласка кроз процеп између дуаната.
Период кретања се изражава једначином:
Т = 2·π·r/υ
Ове две релације указују да је период кретања честице у циклотрону сталан, упркос увећању полупречника путање. То је значајно за синхронизацију промене поларитета електричног поља - на почетку се успостави вредност и не постоји потреба да се у даљем току мења. Међутим, ако се честица креће релативистичком брзином синхронизација је нешто сложенија.

Популарни чланци

Гасни термометар

Гасни термометар сачињава балон испуњен гасом и отворена цев у којој се налази жива. Ова направа може да пружи прецизније резултате мерења температуре у односу на термометре који садрже течни флуид.  Поступак мерења се састоји у томе да се инструмент прво калибрише, односно измере се притисци за познате вредности температура при којима се дешавају промене агрегатних стања неке супстанце. Затим се приступа цртању графика P(T) који ће послужити у поступку одређивања непознате температуре гаса. Симулација
Анимација приказује изглед апаратуре, на начин да је прилагођена ученицима у гимназији. Исто тако је приказано кретање молекула у балону, док загревање балона и померање живиног стуба није предмет овог записа.  Када се балон загреје, гас испољава ширење и тежи да потисне живин стуб. Да би запремина гаса остала стална врши се померање десног крака живиног стуба, тако да се ниво живе у левом краку не мења. Дакле, притисак гаса се увећава. Притисак гаса у балону P, атмосферски притисак Pa…

Ерстедов експеримент

Хеленски мислиоци уочили су да материјали који испољавају магнетна својствапривлаче предмете начињене од гвожђа. Било им је познато да је структура камена из Магнезије попут предмета начињених од гвожђа, а привлачно својство тумачили су постојањем извесног флуида који потиче из магнета. С обзиром да је експериментално истраживање у физици заживело тек при крају епохе ренесансе, тумачење магнетизма је протицало споро. Упечатљив пример за тако нешто представља вишевековно погрешно уверења да бели лук може извршити размагнетисавање игле компаса. Због тога је члановима посаде који су руковали том направом било забрањено да једу ову намирницу! Половином XIII века, војни инжењер Пјер д Марикур вршећи експерименте открива да магнет поседује два пола, при чему се полови појављују иако се магнет преполови, а магнетна игла компаса је усмерена у правцу „небеских полова”. Он појаву приписује утицају неба, а не присуству Земљиног магнетног поља. Покушао је и да направи вечити покретач тако што је…

Максвелова расподела брзина молекула

Полазећи од истраживања Рудолфа Клаузијуса, шкотски физичар Џејмс Максвел разрађује кинетичку теорију гасова математичким путем и долази до открића функционалног облика расподеле брзина молекула гасова. Молекули гасова се крећу брзинама различитих бројних вредности. Те вредности су прилично високе. На пример, на температуриод 200 C молекули ваздуха крећу се брзином у просеку око 1500 km/h. То је дупло више у односу на брзине путничких авиона. Садржај анимације Основу анимације чини балон испуњен топлим ваздухом: youtu.be/mwbk_dZMEQg
Први део односи се на расподелу брзина када ваздух није изложен пламену. На ординатној оси није прецизно наведена величина, јер је анимација намењена гимназијској популацији младих људи који похађају други разред и нису у могућности да детаљно упознају расподелу брзина молекула. Димензије молекула нису сразмерне стварној величини из разлога боље прегледности анимације. Оно што није приказано је другачији облик криве за различите гасове.  Други део приказа …