Пређи на главни садржај

Комптоново расејавање честица

Амерички физичар Артур Комптон је био веома религиозан и сматрао је да ће изградњом нуклеарне бомбе зауставити рат, а многи животи спашени. Током Другог светског рата је био један од челних људи пројекта „Менхетн”. Поред физике и астрономије волео је да проводи време играјући тенис, а занимала га је музика и фотографија.
Остварио је експеримент који није могао да буде објашњен ако се електромагнетно зрачење третира искључиво као талас. Он је слабо везане (валентне) електроне унутар атома излагао дејству рендгенског електромагнетног зрачења, на начин да је вршио упућивање под различитим угловима.

Видео запис




Ако би Комптонов експеримент покушали да објаснимо тако што ћемо рендгенско зрачење третирати као талас, то би изгледало овако: на слободне електроне делује електрично поље таласа, при чему електрони прво апсорбују енергију таласа а затим реемитује ту енергију поново у облику таласа; фреквенција зрачења коју примају електрони није једнака фреквенцији зрачења коју емитују - услед Доплеровог електромагнетног помераја; с обзиром да те брзине нису једнаке, појавиће се један спектар реемитованих електромагнетних таласа. Резултат Комптоновог експеримента није се слагао са овим тумачењем - није опажен било какав спектар.
У анимацији је приказано дејство фотона и једног електрона који је слабо везан у атому. Напомињем да једноставности ради није узето у обзир кретање нуклеона у језгру, нити сложене орбите електрона; исто тако брзине честица нису дате у сразмери.

Популарни чланци

Електромагнетне осцилације

Најједноставнији приказ електромагнетних осцилација представља веза калема и кондензатора у струјном колу. Такво коло је присутно у многим електронским уређајима које употребљавамо.  Кондензатор је приказан у облику ваљка и у почетку је био напуњен. Позитиван знак је у складу са позицијом позитивне облоге кондензатора, а приказује и смер струје у колу. У калему настаје магнетно поље, али се постепено формира због присуства индуктивног електричног отпора. Након што се кондензатор испразни, струја самоиндукције пуни кондензатор - у складу са Ленцовим законом.



Франк-Херцов експеримент

Франк-Херцов експеримент је пружио потврду у вези става Нилса Бора о квантнованости енергетских нивоа електрона у атому. Експеримент је остварен почетком XX века, на начин да је извршено сударање електрона, убрзаних електричним пољем, са атомима. С обзиром да се успоравање електрона догађало једино при одређеним вредностима кинетичких енергија електрона, појава представља пример резонантног процеса.
Симулација експеримента Анимација представља шематски приказ Франк-Херцовог експеримента. Извор електрона, катода, приказана је цилиндром црвене боје, мрежица кроз коју су пролазили електрони је у средишњем делу, а анода је с десне стране. Запазимо да је мрежица на вишем електричном потенцијалу у односу на катоду и аноду. Промена напона између катоде и мрежице може се уочити у доњем левом углу, док се регистрована струја електрона мери амперметром. Атоми живе нису приказани због прегледности записа. Електрони стичу кинетичке енергије од електричног поља и у првом делу анимације је присутно…

Радерфордов модел атома

Ернест Радерфорд је говорио да је каријеру физичара започео када је одлучио да се мане копања кромпира. У улози професора често би се спетљао приликом извођења једначина и студентима је препуштао да доврше започето. Осим физике обожавао је још голф и аутомобиле.  Радерфорд је осмислио први озбиљан модел атома, који је био динамички, полазећи од експеримента са проласком алфа зрачења (језгра атома хелијума) кроз танак листић злата. Злато је користио због велике густине. Сумњао је у исправност Томсоновог статичког модела атома, у складу с којим је атом већим делом сачињен од позитивног наелектрисања, а негативно наелектрисане честице су усађене унутар атома - попут шљива у пудингу, и сматрао је да позитивно наелектрисање у атому заузима много мању запремину. Видео запис
Анимација приказује да је већина позитивно наелектрисаних алфа честица прошла кроз листић злата, са или без скретања, а мали број се одбио под великим углом након директног судара честица са језгром. Дакле, атом је у већем…