Пређи на главни садржај

Ауто-гуме напуњене азотом

Близу мене постоји мала ауто-механичарска радња. Извесно време је био окачен натпис са обавештењем да мајстор пуни аутомобилске гуме азотом. Размишљајући из угла физичара о тој понуди, нисам могао да смислим било који разлог по коме би азот имао предност над ваздухом.
Наводне предности употребе азота су:
  • Азот у мањој мери истиче кроз пукотине на гуми у односу на кисеоник и због тога је притисак постојан. То утиче на мању потрошњу горива
Овај аргумент ми је бесмислен, јер је разлика у пречнику молекула азота и кисеоника безначајно мала у односу на величину пукотине, тако да ће оба гаса подједнако истећи.
  • Промена притиска у гумама, услед загревања током вожње, је мања ако је гума напуњена азотом 
Из разлога што је притисак гаса сразмеран броју молекула, а број молекула азота у гуми је нешто нижи у односу на број молекула ваздуха при једнакој запремини гуме, вероватно је присутна разлика у притисцима када се гума загреје. Међутим, ваздух сачињава око 78% молекула азота и та разлика је занемарљива при уобичајеним брзинама. Могуће је да ова појава долази до изражаја код тркачких аутомобила, али таква возила нису предмет овог чланка
  • Гуме напуњене ваздухом садрже водену пару, што утиче на промену притиска током вожње и појаву корозије на деловима који су томе подложни 
Тврђење о корозији можда има смисла, мада нисам сигуран да би квалитетно урађени делови брзо зарђали. У нашој земљи корозија може да буде проблем, зато што су аутомобили у употреби по неколико деценија. Требало би проверити да ли је више исплативо да се гуме повремено напуне азотом него да се замене зарђали делови након дугогодишње употребе. 
Утицај водене паре на притисак у загрејаној аутомобилској гуми ми је бесмислен, јер је присуство воде мало
  • Азот није запаљив у мери у којој је кисеоник 
То јесте тачно, али ова тема има смисла код гума које се користе у ваздухопловству.
Питао сам мог рођака Ненада, чије знање о аутомобилима оставља утисак, да ли је уочио неку предност вожње на „азотним гумама” и - одговор је био одречан.

Популарни чланци

Електромагнетне осцилације

Најједноставнији приказ електромагнетних осцилација представља веза калема и кондензатора у струјном колу. Такво коло је присутно у многим електронским уређајима које употребљавамо.  Кондензатор је приказан у облику ваљка и у почетку је био напуњен. Позитиван знак је у складу са позицијом позитивне облоге кондензатора, а приказује и смер струје у колу. У калему настаје магнетно поље, али се постепено формира због присуства индуктивног електричног отпора. Након што се кондензатор испразни, струја самоиндукције пуни кондензатор - у складу са Ленцовим законом.



Франк-Херцов експеримент

Франк-Херцов експеримент је пружио потврду у вези става Нилса Бора о квантнованости енергетских нивоа електрона у атому. Експеримент је остварен почетком XX века, на начин да је извршено сударање електрона, убрзаних електричним пољем, са атомима. С обзиром да се успоравање електрона догађало једино при одређеним вредностима кинетичких енергија електрона, појава представља пример резонантног процеса.
Симулација експеримента Анимација представља шематски приказ Франк-Херцовог експеримента. Извор електрона, катода, приказана је цилиндром црвене боје, мрежица кроз коју су пролазили електрони је у средишњем делу, а анода је с десне стране. Запазимо да је мрежица на вишем електричном потенцијалу у односу на катоду и аноду. Промена напона између катоде и мрежице може се уочити у доњем левом углу, док се регистрована струја електрона мери амперметром. Атоми живе нису приказани због прегледности записа. Електрони стичу кинетичке енергије од електричног поља и у првом делу анимације је присутно…

Радерфордов модел атома

Ернест Радерфорд је говорио да је каријеру физичара започео када је одлучио да се мане копања кромпира. У улози професора често би се спетљао приликом извођења једначина и студентима је препуштао да доврше започето. Осим физике обожавао је још голф и аутомобиле.  Радерфорд је осмислио први озбиљан модел атома, који је био динамички, полазећи од експеримента са проласком алфа зрачења (језгра атома хелијума) кроз танак листић злата. Злато је користио због велике густине. Сумњао је у исправност Томсоновог статичког модела атома, у складу с којим је атом већим делом сачињен од позитивног наелектрисања, а негативно наелектрисане честице су усађене унутар атома - попут шљива у пудингу, и сматрао је да позитивно наелектрисање у атому заузима много мању запремину. Видео запис
Анимација приказује да је већина позитивно наелектрисаних алфа честица прошла кроз листић злата, са или без скретања, а мали број се одбио под великим углом након директног судара честица са језгром. Дакле, атом је у већем…